ADR-925

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 561878

CAS#: 75459-34-6 (free)

Description: ADR-925, also known as ICRF-198, is an active iron-chelating metabolite of dexrazoxane.


Chemical Structure

img
ADR-925
CAS# 75459-34-6 (free)

Theoretical Analysis

MedKoo Cat#: 561878
Name: ADR-925
CAS#: 75459-34-6 (free)
Chemical Formula: C11H20N4O6
Exact Mass: 304.14
Molecular Weight: 304.300
Elemental Analysis: C, 43.42; H, 6.62; N, 18.41; O, 31.55

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Related CAS #: 75459-34-6 (free)   ADR-925 HCl    

Synonym: ADR-925; ADR 925; ADR925; ICRF198; ICRF-198; ICRF 198;

IUPAC/Chemical Name: 2-[(2-Amino-2-oxoethyl)-[(2S)-2-[(2-amino-2-oxoethyl)-(carboxymethyl)amino]propyl]amino]acetic acid

InChi Key: YXWHFCSUHVBWFG-ZETCQYMHSA-N

InChi Code: InChI=1S/C11H20N4O6/c1-7(15(4-9(13)17)6-11(20)21)2-14(3-8(12)16)5-10(18)19/h7H,2-6H2,1H3,(H2,12,16)(H2,13,17)(H,18,19)(H,20,21)/t7-/m0/s1

SMILES Code: O=C(O)CN(CC(N)=O)C[C@@H](N(CC(N)=O)CC(O)=O)C

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 304.30 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Jirkovský E, Jirkovská A, Bavlovič-Piskáčková H, Skalická V, Pokorná Z, Karabanovich G, Kollárová-Brázdová P, Kubeš J, Lenčová-Popelová O, Mazurová Y, Adamcová M, Lyon AR, Roh J, Šimůnek T, Štěrbová-Kovaříková P, Štěrba M. Clinically Translatable Prevention of Anthracycline Cardiotoxicity by Dexrazoxane Is Mediated by Topoisomerase II Beta and Not Metal Chelation. Circ Heart Fail. 2021 Nov;14(11):e008209. doi: 10.1161/CIRCHEARTFAILURE.120.008209. Epub 2021 Sep 23. PMID: 34551586.


2: Jirkovský E, Jirkovská A, Bureš J, Chládek J, Lenčová O, Stariat J, Pokorná Z, Karabanovich G, Roh J, Brázdová P, Šimůnek T, Kovaříková P, Štěrba M. Pharmacokinetics of the Cardioprotective Drug Dexrazoxane and Its Active Metabolite ADR-925 with Focus on Cardiomyocytes and the Heart. J Pharmacol Exp Ther. 2018 Mar;364(3):433-446. doi: 10.1124/jpet.117.244848. Epub 2017 Dec 22. PMID: 29273587.


3: Tycova A, Vido M, Kovarikova P, Foret F. Interface-free capillary electrophoresis-mass spectrometry system with nanospray ionization-Analysis of dexrazoxane in blood plasma. J Chromatogr A. 2016 Sep 30;1466:173-9. doi: 10.1016/j.chroma.2016.08.042. Epub 2016 Aug 23. PMID: 27613146.


4: Cermanova J, Kadova Z, Dolezelova E, Zagorova M, Safka V, Hroch M, Laho T, Holeckova M, Mokry J, Kovarikova P, Bures J, Sterba M, Micuda S. Deferoxamine but not dexrazoxane alleviates liver injury induced by endotoxemia in rats. Shock. 2014 Oct;42(4):372-9. doi: 10.1097/SHK.0000000000000210. PMID: 25140599.


5: Kovarikova P, Pasakova-Vrbatova I, Vavrova A, Stariat J, Klimes J, Simunek T. Development of LC-MS/MS method for the simultaneous analysis of the cardioprotective drug dexrazoxane and its metabolite ADR-925 in isolated cardiomyocytes and cell culture medium. J Pharm Biomed Anal. 2013 Mar 25;76:243-51. doi: 10.1016/j.jpba.2012.12.024. Epub 2012 Dec 28. PMID: 23339990.


6: Stěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, Simůnek T. Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal. 2013 Mar 10;18(8):899-929. doi: 10.1089/ars.2012.4795. Epub 2012 Oct 12. PMID: 22794198; PMCID: PMC3557437.


7: Kovaříková P, Stariat J, Klimeš J, Hrušková K, Vávrová K. Hydrophilic interaction liquid chromatography in the separation of a moderately lipophilic drug from its highly polar metabolites--the cardioprotectant dexrazoxane as a model case. J Chromatogr A. 2011 Jan 21;1218(3):416-26. doi: 10.1016/j.chroma.2010.11.050. Epub 2010 Nov 27. PMID: 21168142.


8: Junjing Z, Yan Z, Baolu Z. Scavenging effects of dexrazoxane on free radicals. J Clin Biochem Nutr. 2010 Nov;47(3):238-45. doi: 10.3164/jcbn.10-64. Epub 2010 Oct 29. PMID: 21103033; PMCID: PMC2966934.


9: Popelová O, Sterba M, Hasková P, Simůnek T, Hroch M, Guncová I, Nachtigal P, Adamcová M, Gersl V, Mazurová Y. Dexrazoxane-afforded protection against chronic anthracycline cardiotoxicity in vivo: effective rescue of cardiomyocytes from apoptotic cell death. Br J Cancer. 2009 Sep 1;101(5):792-802. doi: 10.1038/sj.bjc.6605192. Epub 2009 Jul 21. PMID: 19623174; PMCID: PMC2736842.


10: Hasinoff BB, Patel D. The iron chelator Dp44mT does not protect myocytes against doxorubicin. J Inorg Biochem. 2009 Jul;103(7):1093-101. doi: 10.1016/j.jinorgbio.2009.05.007. Epub 2009 May 21. PMID: 19535146.


11: Simůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009 Jan- Feb;61(1):154-71. doi: 10.1016/s1734-1140(09)70018-0. PMID: 19307704.


12: Martin E, Thougaard AV, Grauslund M, Jensen PB, Bjorkling F, Hasinoff BB, Tjørnelund J, Sehested M, Jensen LH. Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy. Toxicology. 2009 Jan 8;255(1-2):72-9. doi: 10.1016/j.tox.2008.10.011. Epub 2008 Oct 25. PMID: 19010377.


13: Schroeder PE, Patel D, Hasinoff BB. The dihydroorotase inhibitor 5-aminoorotic acid inhibits the metabolism in the rat of the cardioprotective drug dexrazoxane and its one-ring open metabolites. Drug Metab Dispos. 2008 Sep;36(9):1780-5. doi: 10.1124/dmd.108.021626. Epub 2008 May 30. PMID: 18515330.


14: Schroeder PE, Hasinoff BB. Metabolism of the one-ring open metabolites of the cardioprotective drug dexrazoxane to its active metal-chelating form in the rat. Drug Metab Dispos. 2005 Sep;33(9):1367-72. doi: 10.1124/dmd.105.005546. Epub 2005 Jun 24. PMID: 15980099.


15: Schroeder PE, Wang GQ, Burczynski FJ, Hasinoff BB. Metabolism of the cardioprotective drug dexrazoxane and one of its metabolites by isolated rat myocytes, hepatocytes, and blood. Drug Metab Dispos. 2005 Jun;33(6):719-25. doi: 10.1124/dmd.104.003186. Epub 2005 Mar 11. PMID: 15764716.


16: Wu X, Hasinoff BB. The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anticancer Drugs. 2005 Jan;16(1):93-9. doi: 10.1097/00001813-200501000-00014. PMID: 15613911.


17: Wu X, Patel D, Hasinoff BB. The iron chelating cardioprotective prodrug dexrazoxane does not affect the cell growth inhibitory effects of bleomycin. J Inorg Biochem. 2004 Nov;98(11):1818-23. doi: 10.1016/j.jinorgbio.2004.08.009. PMID: 15522409.


18: Hasinoff BB, Schroeder PE, Patel D. The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Mol Pharmacol. 2003 Sep;64(3):670-8. doi: 10.1124/mol.64.3.670. PMID: 12920203.


19: Schroeder PE, Jensen PB, Sehested M, Hofland KF, Langer SW, Hasinoff BB. Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemother Pharmacol. 2003 Aug;52(2):167-74. doi: 10.1007/s00280-003-0619-7. Epub 2003 May 15. PMID: 12750840.


20: Schroeder PE, Hasinoff BB. The doxorubicin-cardioprotective drug dexrazoxane undergoes metabolism in the rat to its metal ion-chelating form ADR-925. Cancer Chemother Pharmacol. 2002 Dec;50(6):509-13. doi: 10.1007/s00280-002-0538-z. Epub 2002 Oct 31. PMID: 12451479.