GR-65630

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 575963

CAS#: 117186-80-8

Description: GR-65630 is a 5-HT3 serotonin receptor ligand. [3H]GR65630 has been shown to label 5-HT3 receptors in homogenates of rat entorhinal cortex. Note: This product listed here is not radiolabelled [3H]GR65630. We only supply non-radiolabelled version of GR65630.


Chemical Structure

img
GR-65630
CAS# 117186-80-8

Theoretical Analysis

MedKoo Cat#: 575963
Name: GR-65630
CAS#: 117186-80-8
Chemical Formula: C16H17N3O
Exact Mass: 267.14
Molecular Weight: 267.330
Elemental Analysis: C, 71.89; H, 6.41; N, 15.72; O, 5.98

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: GR 65630; GR65630; GR-65630;

IUPAC/Chemical Name: 1-Propanone, 3-(5-methyl-1H-imidazol-4-yl)-1-(1-methyl-1H-indol-2-yl)-

InChi Key: AQCBJPZFJDPIGL-UHFFFAOYSA-N

InChi Code: InChI=1S/C16H17N3O/c1-11-13(18-10-17-11)7-8-16(20)15-9-12-5-3-4-6-14(12)19(15)2/h3-6,9-10H,7-8H2,1-2H3,(H,17,18)

SMILES Code: Cc1nc[nH]c1CCC(=O)c2cc3ccccc3n2C

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info: L-3,4-dihydroxyphenylalanine (l-DOPA) is the mainstay treatment for Parkinson's disease, but its effectiveness during early disease is marred by the eventual development of l-DOPA induced dyskinesia. In hemi-parkinsonian rats, the serotonin type 3 (5-HT3) antagonists ondansetron and granisetron alleviated dyskinesia induced by l-DOPA without impeding its anti-parkinsonian action; in parkinsonian marmosets, ondansetron alleviated dyskinesia and enhanced l-DOPA anti-parkinsonian action.

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 267.33 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Kwan C, Lévesque C, Bédard D, Frouni I, Yesuf JM, Hamadjida A, Lévesque D, Clarke PB, Huot P. Autoradiographic labelling of 5-HT3 receptors in the hemi-parkinsonian rat brain. Neurosci Res. 2022 Apr;177:135-144. doi: 10.1016/j.neures.2021.12.004. Epub 2021 Dec 24. PMID: 34954302.


2: Nebrisi EE, Prytkova T, Lorke DE, Howarth L, Alzaabi AH, Yang KS, Howarth FC, Oz M. Capsaicin Is a Negative Allosteric Modulator of the 5-HT3 Receptor. Front Pharmacol. 2020 Aug 31;11:1274. doi: 10.3389/fphar.2020.01274. PMID: 32982728; PMCID: PMC7490547.


3: Ashoor A, Nordman JC, Veltri D, Yang KH, Shuba Y, Al Kury L, Sadek B, Howarth FC, Shehu A, Kabbani N, Oz M. Menthol inhibits 5-HT3 receptor-mediated currents. J Pharmacol Exp Ther. 2013 Nov;347(2):398-409. doi: 10.1124/jpet.113.203976. Epub 2013 Aug 21. Erratum in: J Pharmacol Exp Ther. 2013 Dec;347(3):816. PMID: 23965380.


4: Walstab J, Krüger D, Stark T, Hofmann T, Demir IE, Ceyhan GO, Feistel B, Schemann M, Niesler B. Ginger and its pungent constituents non-competitively inhibit activation of human recombinant and native 5-HT3 receptors of enteric neurons. Neurogastroenterol Motil. 2013 May;25(5):439-47, e302. doi: 10.1111/nmo.12107. Epub 2013 Mar 12. PMID: 23490018.


5: Baptista-Hon DT, Deeb TZ, Othman NA, Sharp D, Hales TG. The 5-HT3B subunit affects high-potency inhibition of 5-HT3 receptors by morphine. Br J Pharmacol. 2012 Feb;165(3):693-704. doi: 10.1111/j.1476-5381.2011.01582.x. PMID: 21740409; PMCID: PMC3315041.


6: Nothdurfter C, Tanasic S, Rammes G, Rupprecht R. Modulation of ligand-gated ion channels as a novel pharmacological principle. Pharmacopsychiatry. 2011 May;44 Suppl 1:S27-34. doi: 10.1055/s-0031-1271704. Epub 2011 May 4. PMID: 21544743.


7: Heimes K, Hauk F, Verspohl EJ. Mode of action of peppermint oil and (-)-menthol with respect to 5-HT3 receptor subtypes: binding studies, cation uptake by receptor channels and contraction of isolated rat ileum. Phytother Res. 2011 May;25(5):702-8. doi: 10.1002/ptr.3316. Epub 2010 Nov 12. PMID: 21077259.


8: Feng JJ, Cheng FC, Lin CH, Wei JW, Yang SD. Characterization of 5-HT transporter and receptor system in HeLaS3 cells by [(3)H]8-OH-DPAT and other serotonergic ligands. Arch Biochem Biophys. 2011 Feb 1;506(1):66-72. doi: 10.1016/j.abb.2010.10.024. Epub 2010 Nov 5. PMID: 21056540.


9: Yang KH, Isaev D, Morales M, Petroianu G, Galadari S, Oz M. The effect of Δ9-tetrahydrocannabinol on 5-HT3 receptors depends on the current density. Neuroscience. 2010 Nov 24;171(1):40-9. doi: 10.1016/j.neuroscience.2010.08.044. Epub 2010 Aug 26. PMID: 20800662.


10: Walstab J, Hammer C, Lasitschka F, Möller D, Connolly CN, Rappold G, Brüss M, Bönisch H, Niesler B. RIC-3 exclusively enhances the surface expression of human homomeric 5-hydroxytryptamine type 3A (5-HT3A) receptors despite direct interactions with 5-HT3A, -C, -D, and -E subunits. J Biol Chem. 2010 Aug 27;285(35):26956-26965. doi: 10.1074/jbc.M110.122838. Epub 2010 Jun 3. PMID: 20522555; PMCID: PMC2930695.


11: Yang KH, Galadari S, Isaev D, Petroianu G, Shippenberg TS, Oz M. The nonpsychoactive cannabinoid cannabidiol inhibits 5-hydroxytryptamine3A receptor- mediated currents in Xenopus laevis oocytes. J Pharmacol Exp Ther. 2010 May;333(2):547-54. doi: 10.1124/jpet.109.162594. Epub 2010 Feb 16. PMID: 20160007; PMCID: PMC2872948.


12: Combrink S, Kostanian A, Walstab J, Barann M, Brüss M, Göthert M, Bönisch H. Characterization of the naturally occurring Arg344His variant of the human 5-HT 3A receptor. Pharmacol Rep. 2009 Sep-Oct;61(5):785-97. doi: 10.1016/s1734-1140(09)70134-3. PMID: 19904001.


13: Heimes K, Feistel B, Verspohl EJ. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts. Eur J Pharmacol. 2009 Dec 10;624(1-3):58-65. doi: 10.1016/j.ejphar.2009.09.049. Epub 2009 Oct 7. PMID: 19818348.


14: Walstab J, Hammer C, Bönisch H, Rappold G, Niesler B. Naturally occurring variants in the HTR3B gene significantly alter properties of human heteromeric 5-hydroxytryptamine-3A/B receptors. Pharmacogenet Genomics. 2008 Sep;18(9):793-802. doi: 10.1097/FPC.0b013e3283050117. PMID: 18698232.


15: Krzywkowski K, Jensen AA, Connolly CN, Bräuner-Osborne H. Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenet Genomics. 2007 Apr;17(4):255-66. doi: 10.1097/FPC.0b013e3280117269. Erratum in: Pharmacogenet Genomics. 2007 Jun;17(6):459. PMID: 17496724.


16: Yoshida S, Watanabe T, Sato Y. Regulatory molecules for the 5-HT3 receptor ion channel gating system. Bioorg Med Chem. 2007 May 15;15(10):3515-23. doi: 10.1016/j.bmc.2007.02.054. Epub 2007 Mar 7. PMID: 17391967.


17: Simmen U, Kelber O, Okpanyi SN, Jaeggi R, Bueter B, Weiser D. Binding of STW 5 (Iberogast) and its components to intestinal 5-HT, muscarinic M3, and opioid receptors. Phytomedicine. 2006;13 Suppl 5:51-5. doi: 10.1016/j.phymed.2006.03.012. Epub 2006 Sep 14. PMID: 16973340.


18: Yoo JH, Cho JH, Yu HS, Lee KW, Lee BH, Jeong SM, Nah SY, Kim HC, Lee SY, Jang CG. Involvement of 5-HT receptors in the development and expression of methamphetamine-induced behavioral sensitization: 5-HT receptor channel and binding study. J Neurochem. 2006 Nov;99(3):976-88. doi: 10.1111/j.1471-4159.2006.04137.x. Epub 2006 Aug 29. PMID: 16942594.


19: Abdel-Aziz H, Windeck T, Ploch M, Verspohl EJ. Mode of action of gingerols and shogaols on 5-HT3 receptors: binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. Eur J Pharmacol. 2006 Jan 13;530(1-2):136-43. doi: 10.1016/j.ejphar.2005.10.049. Epub 2005 Dec 20. PMID: 16364290.


20: Walkembach J, Brüss M, Urban BW, Barann M. Interactions of metoclopramide and ergotamine with human 5-HT(3A) receptors and human 5-HT reuptake carriers. Br J Pharmacol. 2005 Oct;146(4):543-52. doi: 10.1038/sj.bjp.0706351. Erratum in: Br J Pharmacol. 2005 Dec;146(8):1156. PMID: 16041395; PMCID: PMC1751187.