Cafenstrole

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 534972

CAS#: 125306-83-4

Description: Cafenstrole is a bioactive chemical.


Chemical Structure

img
Cafenstrole
CAS# 125306-83-4

Theoretical Analysis

MedKoo Cat#: 534972
Name: Cafenstrole
CAS#: 125306-83-4
Chemical Formula: C16H22N4O3S
Exact Mass: 350.14
Molecular Weight: 350.437
Elemental Analysis: C, 54.84; H, 6.33; N, 15.99; O, 13.70; S, 9.15

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Cafenstrole

IUPAC/Chemical Name: 1H-1,2,4-Triazole-1-carboxamide, N,N-diethyl-3-mesitylsulfonyl-

InChi Key: HFEJHAAIJZXXRE-UHFFFAOYSA-N

InChi Code: InChI=1S/C16H22N4O3S/c1-6-19(7-2)16(21)20-10-17-15(18-20)24(22,23)14-12(4)8-11(3)9-13(14)5/h8-10H,6-7H2,1-5H3

SMILES Code: O=C(N1N=C(S(=O)(C2=C(C)C=C(C)C=C2C)=O)N=C1)N(CC)CC

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 350.44 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Kang G, Kim J, Park H, Kim TH. Crystal structure of cafenstrole. Acta Crystallogr E Crystallogr Commun. 2015 Jul 29;71(Pt 8):o614. doi: 10.1107/S2056989015013869. PMID: 26396825; PMCID: PMC4571425.


2: Abd El-Aty AM, Lee GW, Mamun MI, Choi JH, Cho SK, Shin HC, Shim JH. Development and validation of a method for the analysis of cafenstrole and its metabolite in brown rice grains and rice straw using high-performance liquid chromatography. Biomed Chromatogr. 2008 Mar;22(3):306-15. doi: 10.1002/bmc.934. PMID: 18059057.


3: Jaroensanti-Tanaka N, Miyazaki S, Hosoi A, Tanaka K, Ito S, Iuchi S, Nakano T, Kobayashi M, Nakajima M, Asami T. The chemical NJ15 affects hypocotyl elongation and shoot gravitropism via cutin polymerization. Biosci Biotechnol Biochem. 2018 Oct;82(10):1770-1779. doi: 10.1080/09168451.2018.1484278. Epub 2018 Jun 18. PMID: 29912637.


4: Takahashi H, Ohki A, Kanzaki M, Tanaka A, Sato Y, Matthes B, Böger P, Wakabayashi K. Very-long-chain fatty acid biosynthesis is inhibited by cafenstrole, N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide and its analogs. Z Naturforsch C J Biosci. 2001 Sep-Oct;56(9-10):781-6. doi: 10.1515/znc-2001-9-1016. PMID: 11724382.


5: Park H, Kwon E, Yoon I, Kim J. Crystal structure of catena-poly[[(N ,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide-κ N1)silver(I)]-μ-nitrato-κ3O,O':O]. Acta Crystallogr E Crystallogr Commun. 2016 Oct 21;72(Pt 11):1610-1613. doi: 10.1107/S2056989016016662. PMID: 27840720; PMCID: PMC5095845.


6: Jung SC, Kim HG, Kuk YI, Ahn HG, Senseman SA, Lee DJ. Bioavailability of the Nano-Unit 14C-Agrochemicals Under Various Water Potential. J Nanosci Nanotechnol. 2015 Aug;15(8):6206-9. doi: 10.1166/jnn.2015.10447. PMID: 26369226.


7: Yang X, Guschina IA, Hurst S, Wood S, Langford M, Hawkes T, Harwood JL. The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Manag Sci. 2010 Jul;66(7):794-800. doi: 10.1002/ps.1944. PMID: 20533380.


8: Ma Y, Liu R, Gong X, Li Z, Huang Q, Wang H, Song G. Synthesis and herbicidal activity of N,N-diethyl-3-(arylselenonyl)-1H-1,2,4-triazole-1-carboxamide. J Agric Food Chem. 2006 Oct 4;54(20):7724-8. doi: 10.1021/jf0609328. PMID: 17002445.


9: Jung SC, Kuk YI, Senseman SA, Ahn HG, Seong CN, Lee DJ. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions. J Nanosci Nanotechnol. 2015 Jan;15(1):676-9. doi: 10.1166/jnn.2015.8370. PMID: 26328425.


10: Tsuda T, Nakamura T, Inoue A, Tanaka K. Pesticides in water, fish and shellfish from littoral area of Lake Biwa. Bull Environ Contam Toxicol. 2009 Jun;82(6):716-21. doi: 10.1007/s00128-009-9681-0. Epub 2009 Mar 10. PMID: 19277442.


11: Eckermann C, Matthes B, Nimtz M, Reiser V, Lederer B, Böger P, Schröder J. Covalent binding of chloroacetamide herbicides to the active site cysteine of plant type III polyketide synthases. Phytochemistry. 2003 Nov;64(6):1045-54. doi: 10.1016/s0031-9422(03)00516-8. PMID: 14568070.


12: Nobusawa T, Okushima Y, Nagata N, Kojima M, Sakakibara H, Umeda M. Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. PLoS Biol. 2013;11(4):e1001531. doi: 10.1371/journal.pbio.1001531. Epub 2013 Apr 9. PMID: 23585732; PMCID: PMC3621670.


13: Nobusawa T, Umeda M. Very-long-chain fatty acids have an essential role in plastid division by controlling Z-ring formation in Arabidopsis thaliana. Genes Cells. 2012 Aug;17(8):709-19. doi: 10.1111/j.1365-2443.2012.01619.x. Epub 2012 Jun 27. PMID: 22734690.