IMR-1A
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 406984

CAS#: 331862-41-0

Description: IMR-1A is a metabolite of IMR-1 (MedKoo Cat#: 406983). IMR-1A acts as Notch inhibitor and targeting gene transcription by disrupting Mam1 recruitment to chromatin.


Chemical Structure

img
IMR-1A
CAS# 331862-41-0

Theoretical Analysis

MedKoo Cat#: 406984
Name: IMR-1A
CAS#: 331862-41-0
Chemical Formula: C13H11NO5S2
Exact Mass: 325.01
Molecular Weight: 325.353
Elemental Analysis: C, 47.99; H, 3.41; N, 4.31; O, 24.59; S, 19.71

Price and Availability

Size Price Availability Quantity
100mg USD 850
200mg USD 1250
500mg USD 1950
1g USD 2850
Bulk inquiry

Synonym: IMR-1A; IMR 1A; IMR1A; Inhibitor of Mastermind Recruitment-1 Acid.

IUPAC/Chemical Name: 2-[2-Methoxy-4-[(Z)-(4-oxo-2-sulfanylidene-1,3-thiazolidin-5-ylidene)methyl]phenoxy]acetic acid

InChi Key: DVBJNSKWHSGTDK-YHYXMXQVSA-N

InChi Code: InChI=1S/C13H11NO5S2/c1-18-9-4-7(2-3-8(9)19-6-11(15)16)5-10-12(17)14-13(20)21-10/h2-5H,6H2,1H3,(H,15,16)(H,14,17,20)/b10-5-

SMILES Code: O=C(O)COC1=CC=C(/C=C(SC(N2)=S)/C2=O)C=C1OC

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Product Data:
Biological target: IMR-1A, a acid metabolite of IMR-1, is a Notch inhibitor with an IC50 of 0.5 μM. IMR-1A has a 50-fold increase in potency with respect to IMR-1. IMR-1 can metabolize in vivo to IMR-1A.
In vitro activity: To determine the effect of IMR-1 treatment on the assembly of the NTC in cells, Notch-dependent cell lines OE33 and 786-0 were treated with DAPT or IMR-1. Treatment of OE33 and 786-0 with IMR-1 also decreased the occupancy of Maml1 on the HES1 promoter but, in contrast to DAPT treatment, IMR-1 treatment did not affect the occupancy of Notch1 on the HES1 promoter (Fig 3A). Therefore, these data indicate that IMR-1 specifically disrupts the recruitment of Maml1 to chromatin while the binding of NICD to CSL is unaffected. Reference: Cancer Res. 2016 Jun 15;76(12):3593-603. https://pubmed.ncbi.nlm.nih.gov/27197169/
In vivo activity: Treatment of both PDX tumors with IMR-1 significantly abrogated growth to a similar level achieved with DAPT treatment (Fig. 5A and 5B), without any significant weight loss or other visible signs of adverse effects in the treated animals (Supplementary Fig. 3). Following 24 days of treatment, tumors were harvested and Notch target gene transcription was evaluated. These data demonstrate that treatment with IMR-1 dramatically reduced the expression level of the tested Notch target genes (Hes1, HeyL, and Notch3; Fig. 5C) in both PDX models. Reference: Cancer Res. 2016 Jun 15;76(12):3593-603. https://pubmed.ncbi.nlm.nih.gov/27197169/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 4.0 12.29
Water 1.0 3.07

Preparing Stock Solutions

The following data is based on the product molecular weight 325.35 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Astudillo L, Da Silva TG, Wang Z, Han X, Jin K, VanWye J, Zhu X, Weaver K, Oashi T, Lopes PE, Orton D, Neitzel LR, Lee E, Landgraf R, Robbins DJ, MacKerell AD Jr, Capobianco AJ. The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis. Cancer Res. 2016 Jun 15;76(12):3593-603. doi: 10.1158/0008-5472.CAN-16-0061. Epub 2016 Apr 13. PMID: 27197169; PMCID: PMC4911243.
In vitro protocol: 1. Astudillo L, Da Silva TG, Wang Z, Han X, Jin K, VanWye J, Zhu X, Weaver K, Oashi T, Lopes PE, Orton D, Neitzel LR, Lee E, Landgraf R, Robbins DJ, MacKerell AD Jr, Capobianco AJ. The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis. Cancer Res. 2016 Jun 15;76(12):3593-603. doi: 10.1158/0008-5472.CAN-16-0061. Epub 2016 Apr 13. PMID: 27197169; PMCID: PMC4911243.
In vivo protocol: 1. Astudillo L, Da Silva TG, Wang Z, Han X, Jin K, VanWye J, Zhu X, Weaver K, Oashi T, Lopes PE, Orton D, Neitzel LR, Lee E, Landgraf R, Robbins DJ, MacKerell AD Jr, Capobianco AJ. The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis. Cancer Res. 2016 Jun 15;76(12):3593-603. doi: 10.1158/0008-5472.CAN-16-0061. Epub 2016 Apr 13. PMID: 27197169; PMCID: PMC4911243.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Astudillo L, Da Silva TG, Wang Z, Han X, Jin K, VanWye J, Zhu X, Weaver K, Oashi T, Lopes PE, Orton D, Neitzel LR, Lee E, Landgraf R, Robbins DJ, MacKerell AD Jr, Capobianco AJ. The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis. Cancer Res. 2016 Jun 15;76(12):3593-603. doi: 10.1158/0008-5472.CAN-16-0061. PubMed PMID: 27197169; PubMed Central PMCID: PMC4911243.

2: Nakaura T, Iyama Y, Kidoh M, Yokoyama K, Oda S, Tokuyasu S, Harada K, Yamashita Y. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging. Neuroradiology. 2016 Mar;58(3):245-51. doi: 10.1007/s00234-015-1631-4. PubMed PMID: 26715558.

3: Svinogeeva TP, Kharlampovich SI. [Effeco of sarcolysine on the growth and morphological characteristics of IMR-1 sarcoma]. Vopr Onkol. 1974;20(4):98-9. Russian. PubMed PMID: 4439824.

4: Kharlampovich SI. [Combined drug and radiation therapy of IMR-1 sarcoma with regard to its mitotic activity]. Vopr Onkol. 1970;16(1):75-82. Russian. PubMed PMID: 5434579.

5: Kharlampovich SI, Podsosov SP. [Transplanted sarcoma (IMR-1) in "August" strain rats]. Vopr Onkol. 1966 Apr;12(4):83-6. Russian. PubMed PMID: 6001005.

6: Leung M, Juergens CP, Lo ST, Leung DY. Evaluation of coronary microvascular function by left ventricular contractile reserve with low-dose dobutamine echocardiography. EuroIntervention. 2014 Feb;9(10):1202-9. doi: 10.4244/EIJV9I10A202. PubMed PMID: 24561737.

7: Hager M, Mikuz G, Kolbitsch C, Moser PL. Association between local atherosclerosis and renal cell carcinomas. Nutr Cancer. 2008;60(3):364-7. doi: 10.1080/01635580802067241. PubMed PMID: 18444170.

8: Lim S, Lee GY, Park HS, Lee DH, Oh TJ, Kim KM, Kim YB, Jun HS, Jang HC, Park KS. Attenuation of carotid neointimal formation after direct delivery of a recombinant adenovirus expressing glucagon-like peptide-1 in diabetic rats. Cardiovasc Res. 2016 Oct 4. pii: cvw213. [Epub ahead of print] PubMed PMID: 27702762.

9: Hager M, Mikuz G, Haufe H, Kolbitsch C, Moser KB, Moser PL. Association between atherosclerosis and urothelial tumors of the renal pelvis. World J Urol. 2008 Aug;26(4):375-9. doi: 10.1007/s00345-008-0271-2. PubMed PMID: 18483813.

10: Johansson P, Williams W, El-Mohandes A. Infant mortality in American Indians and Alaska Natives 1995-1999 and 2000-2004. J Health Care Poor Underserved. 2013 Aug;24(3):1276-87. doi: 10.1353/hpu.2013.0133. PubMed PMID: 23974398.

11: Lewycka S, Mwansambo C, Rosato M, Kazembe P, Phiri T, Mganga A, Chapota H, Malamba F, Kainja E, Newell ML, Greco G, Pulkki-Brännström AM, Skordis-Worrall J, Vergnano S, Osrin D, Costello A. Effect of women's groups and volunteer peer counselling on rates of mortality, morbidity, and health behaviours in mothers and children in rural Malawi (MaiMwana): a factorial, cluster-randomised controlled trial. Lancet. 2013 May 18;381(9879):1721-35. doi: 10.1016/S0140-6736(12)61959-X. PubMed PMID: 23683639; PubMed Central PMCID: PMC3796349.

12: Yorifuji T, Tanihara S, Inoue S, Takao S, Kawachi I. The role of medicine in the decline of post-War infant mortality in Japan. Paediatr Perinat Epidemiol. 2011 Nov;25(6):601-8. doi: 10.1111/j.1365-3016.2011.01216.x. PubMed PMID: 21980949.

13: Liu B, Fisher M, Groves P. Down-regulation of the ERK1 and ERK2 mitogen-activated protein kinases using antisense oligonucleotides inhibits intimal hyperplasia in a porcine model of coronary balloon angioplasty. Cardiovasc Res. 2002 Jun;54(3):640-8. PubMed PMID: 12031710.

14: Bothe W, Nguyen TC, Ennis DB, Itoh A, Carlhäll CJ, Lai DT, Ingels NB, Miller DC. Effects of acute ischemic mitral regurgitation on three-dimensional mitral leaflet edge geometry. Eur J Cardiothorac Surg. 2008 Feb;33(2):191-7. doi: 10.1016/j.ejcts.2007.10.024. PubMed PMID: 18321461; PubMed Central PMCID: PMC2277480.

15: Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001 Apr 3;103(13):1759-64. PubMed PMID: 11282907.

16: Mbacke C, Mbodj FG. [Death during infancy in Africa: demographic aspects]. Vie Sante. 1990 Apr;(3):8-11. French. PubMed PMID: 12283243.

17: Pelaez G. The underregistration of infant mortality: a new method for its estimation. Courrier. 1982;32(1):1-8. PubMed PMID: 12338816.