WARNING: This product is for research use only, not for human or veterinary use.
MedKoo CAT#: 465305
CAS#: 1076-22-8
Description: 3-MX is a cGMP phosphodiesterase (PDE) inhibitor and a metabolite of theophylline and caffeine. It is formed from theophylline by the cytochrome P450 (CYP) isoform CYP1A2 and from caffeine via 6A5NF-1,3-dimethyluracil, 1,3,7-trimethyluric acid, or theobromine intermediates. 3-MX inhibits cGMP PDE in isolated guinea pig trachealis muscle with an IC50 value of 920 µM. It is neurotoxic to mice, inducing convulsions with an ED50 value of 1,107 nmol/kg.
MedKoo Cat#: 465305
Name: 3-MX
CAS#: 1076-22-8
Chemical Formula: C6H6N4O2
Exact Mass: 166.0491
Molecular Weight: 166.14
Elemental Analysis: C, 43.38; H, 3.64; N, 33.72; O, 19.26
Synonym: 3-MX; 3MX; 3 MX; 3-Methylxanthine; 3Methylxanthine; 3 Methylxanthine; NSC 515466; NSC515466; NSC-515466;
IUPAC/Chemical Name: 3-methyl-3,7-dihydro-1H-purine-2,6-dione
InChi Key: GMSNIKWWOQHZGF-UHFFFAOYSA-N
InChi Code: InChI=1S/C6H6N4O2/c1-10-4-3(7-2-8-4)5(11)9-6(10)12/h2H,1H3,(H,7,8)(H,9,11,12)
SMILES Code: O=C1NC(N(C2=C1NC=N2)C)=O
Appearance: Solid powder
Purity: >98% (or refer to the Certificate of Analysis)
Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility: To be determined
Shelf Life: >2 years if stored properly
Drug Formulation: To be determined
Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code: 2934.99.9001
The following data is based on the product molecular weight 166.14 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass | 1 mg | 5 mg | 10 mg |
---|---|---|---|
1 mM | 1.15 mL | 5.76 mL | 11.51 mL |
5 mM | 0.23 mL | 1.15 mL | 2.3 mL |
10 mM | 0.12 mL | 0.58 mL | 1.15 mL |
50 mM | 0.02 mL | 0.12 mL | 0.23 mL |
1: McCullough ML, Hodge RA, Campbell PT, Stevens VL, Wang Y. Pre-Diagnostic Circulating Metabolites and Colorectal Cancer Risk in the Cancer Prevention Study-II Nutrition Cohort. Metabolites. 2021 Mar 9;11(3):156. doi: 10.3390/metabo11030156. PMID: 33803340; PMCID: PMC8000483.
2: Deng C, Ku X, Cheng LL, Pan SA, Fan L, Deng WW, Zhao J, Zhang ZZ. Metabolite and Transcriptome Profiling on Xanthine Alkaloids-Fed Tea Plant (Camellia sinensis) Shoot Tips and Roots Reveal the Complex Metabolic Network for Caffeine Biosynthesis and Degradation. Front Plant Sci. 2020 Sep 9;11:551288. doi: 10.3389/fpls.2020.551288. PMID: 33013969; PMCID: PMC7509060.
3: Zhou B, Ma C, Zheng C, Xia T, Ma B, Liu X. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2. BMC Microbiol. 2020 Aug 27;20(1):269. doi: 10.1186/s12866-020-01951-z. PMID: 32854634; PMCID: PMC7453516.
4: Zhou B, Ma C, Xia T, Li X, Zheng C, Wu T, Liu X. Isolation, characterization and application of theophylline-degrading Aspergillus fungi. Microb Cell Fact. 2020 Mar 19;19(1):72. doi: 10.1186/s12934-020-01333-0. PMID: 32192512; PMCID: PMC7082937.
5: Iwasaki RS, Ozdilek BA, Garst AD, Choudhury A, Batey RT. Small molecule regulated sgRNAs enable control of genome editing in E. coli by Cas9. Nat Commun. 2020 Mar 13;11(1):1394. doi: 10.1038/s41467-020-15226-8. PMID: 32170140; PMCID: PMC7070018.
6: Zhou B, Ma C, Ren X, Xia T, Li X. LC-MS/MS-based metabolomic analysis of caffeine-degrading fungus Aspergillus sydowii during tea fermentation. J Food Sci. 2020 Feb;85(2):477-485. doi: 10.1111/1750-3841.15015. Epub 2020 Jan 6. PMID: 31905425.
7: Tabung FK, Liang L, Huang T, Balasubramanian R, Zhao Y, Chandler PD, Manson JE, Cespedes Feliciano EM, Hayden KM, Van Horn L, Clish CB, Giovannucci EL, Rexrode KM. Identifying metabolomic profiles of inflammatory diets in postmenopausal women. Clin Nutr. 2020 May;39(5):1478-1490. doi: 10.1016/j.clnu.2019.06.010. Epub 2019 Jun 17. PMID: 31255351; PMCID: PMC6918009.
8: Carrasco-Cabrera CP, Bell TL, Kertesz MA. Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Appl Microbiol Biotechnol. 2019 Jul;103(14):5831-5841. doi: 10.1007/s00253-019-09883-z. Epub 2019 May 21. PMID: 31115628.
9: Sun XD, Zheng YC, Ma CY, Yang J, Gao QB, Yan Y, Wang ZZ, Li W, Zhao W, Liu HM, Ding L. Identifying the novel inhibitors of lysine-specific demethylase 1 (LSD1) combining pharmacophore-based and structure-based virtual screening. J Biomol Struct Dyn. 2019 Oct;37(16):4200-4214. doi: 10.1080/07391102.2018.1538903. Epub 2018 Dec 5. PMID: 30366512.
10: Grases F, Costa-Bauza A, Roig J, Rodriguez A. Xanthine urolithiasis: Inhibitors of xanthine crystallization. PLoS One. 2018 Aug 29;13(8):e0198881. doi: 10.1371/journal.pone.0198881. PMID: 30157195; PMCID: PMC6114289.
11: Du X, Guan Y, Huang Q, Lv M, He X, Yan L, Hayashi S, Fang C, Wang X, Sheng J. Low Concentrations of Caffeine and Its Analogs Extend the Lifespan of Caenorhabditis elegans by Modulating IGF-1-Like Pathway. Front Aging Neurosci. 2018 Jul 16;10:211. doi: 10.3389/fnagi.2018.00211. PMID: 30061824; PMCID: PMC6054938.
12: Malatesta L, Cosco D, Paolino D, Cilurzo F, Costa N, Di Tullio A, Fresta M, Celia C, Di Marzio L, Locatelli M. Simultaneous quantification of Gemcitabine and Irinotecan hydrochloride in rat plasma by using high performance liquid chromatography-diode array detector. J Pharm Biomed Anal. 2018 Sep 10;159:192-199. doi: 10.1016/j.jpba.2018.06.060. Epub 2018 Jun 30. PMID: 29990886.
13: Rebholz CM, Lichtenstein AH, Zheng Z, Appel LJ, Coresh J. Serum untargeted metabolomic profile of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern. Am J Clin Nutr. 2018 Aug 1;108(2):243-255. doi: 10.1093/ajcn/nqy099. PMID: 29917038; PMCID: PMC6669331.
14: Zhou B, Ma C, Wang H, Xia T. Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation. BMC Microbiol. 2018 Jun 5;18(1):53. doi: 10.1186/s12866-018-1194-8. PMID: 29866035; PMCID: PMC5987490.
15: He K, Echigo S, Asada Y, Itoh S. Determination of Caffeine and Its Metabolites in Wastewater Treatment Plants Using Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Anal Sci. 2018;34(3):349-354. doi: 10.2116/analsci.34.349. PMID: 29526904.
16: Oduro-Mensah D, Ocloo A, Lowor ST, Bonney EY, Okine LKNA, Adamafio NA. Isolation and characterisation of theobromine-degrading filamentous fungi. Microbiol Res. 2018 Jan;206:16-24. doi: 10.1016/j.micres.2017.09.006. Epub 2017 Sep 19. PMID: 29146253.
17: Rodriguez A, Gomila RM, Martorell G, Costa-Bauza A, Grases F. Quantification of xanthine- and uric acid-related compounds in urine using a "dilute-and-shoot" technique coupling ultra-high-performance liquid chromatography and high- resolution Orbitrap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Nov 1;1067:53-60. doi: 10.1016/j.jchromb.2017.09.047. Epub 2017 Oct 2. PMID: 28992566.
18: Merlier F, Jellali R, Leclerc E. Online monitoring of hepatic rat metabolism by coupling a liver biochip and a mass spectrometer. Analyst. 2017 Sep 25;142(19):3747-3757. doi: 10.1039/c7an00973a. PMID: 28891561.
19: Sohn JA, Kim HS, Oh J, Cho JY, Yu KS, Lee J, Shin SH, Lee JA, Choi CW, Kim EK, Kim BI, Park EA. Prediction of serum theophylline concentrations and cytochrome P450 1A2 activity by analyzing urinary metabolites in preterm infants. Br J Clin Pharmacol. 2017 Jun;83(6):1279-1286. doi: 10.1111/bcp.13211. Epub 2017 Jan 18. PMID: 27995649; PMCID: PMC5427230.
20: Changenet-Barret P, Kovács L, Markovitsi D, Gustavsson T. Xanthines Studied via Femtosecond Fluorescence Spectroscopy. Molecules. 2016 Dec 3;21(12):1668. doi: 10.3390/molecules21121668. PMID: 27918492; PMCID: PMC6274292.