Bactenecin bovine TFA salt

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 464933

CAS#: unknown

Description: Bactenecin is a cyclic cationic peptide with antimicrobial activity. It is found in bovine neutrophils. Bactenecin is active against the bacteria E. coli and S. aureus (IC50s = 8 and 32 mg/ml, respectively) and the fungus C. albicans (MIC = 64 mg/ml).

Chemical Structure

Bactenecin bovine TFA salt
CAS# unknown

Theoretical Analysis

MedKoo Cat#: 464933
Name: Bactenecin bovine TFA salt
CAS#: unknown
Chemical Formula: C65H119F3N24O15S2
Exact Mass:
Molecular Weight: 1597.9352
Elemental Analysis: C, 48.86; H, 7.51; F, 3.57; N, 21.04; O, 15.02; S, 4.01

Price and Availability

Size Price Availability Quantity
1.0mg USD 410.0 2 Weeks
Bulk inquiry

Synonym: Bactenecin bovine TFA salt;

IUPAC/Chemical Name: ((4R,7S,10S,13S,16S,19S,22S,25S,28R)-28-((S)-2-((S)-2-amino-5-guanidinopentanamido)-4-methylpentanamido)-13,22-di((S)-sec-butyl)-10,25-bis(3-guanidinopropyl)-7,16,19-triisopropyl-6,9,12,15,18,21,24,27-octaoxo-1,2-dithia-5,8,11,14,17,20,23,26-octaazacyclononacosane-4-carbonyl)-L-arginine compound with 2,2,2-trifluoroacetic acid (1:1)


InChi Code: InChI=1S/C63H118N24O13S2.C2HF3O2/c1-13-34(11)46-57(97)78-38(21-17-25-75-62(69)70)49(89)83-43(31(5)6)54(94)82-42(53(93)79-39(59(99)100)22-18-26-76-63(71)72)29-102-101-28-41(81-51(91)40(27-30(3)4)80-48(88)36(64)19-15-23-73-60(65)66)52(92)77-37(20-16-24-74-61(67)68)50(90)86-47(35(12)14-2)58(98)85-44(32(7)8)55(95)84-45(33(9)10)56(96)87-46;3-2(4,5)1(6)7/h30-47H,13-29,64H2,1-12H3,(H,77,92)(H,78,97)(H,79,93)(H,80,88)(H,81,91)(H,82,94)(H,83,89)(H,84,95)(H,85,98)(H,86,90)(H,87,96)(H,99,100)(H4,65,66,73)(H4,67,68,74)(H4,69,70,75)(H4,71,72,76);(H,6,7)/t34-,35-,36-,37-,38-,39-,40-,41-,42-,43-,44-,45-,46-,47-;/m0./s1

SMILES Code: O=C1[C@@H](NC([C@@]([H])(NC([C@@]([H])(NC([C@@H](NC([C@@H](NC([C@@]([H])(NC([C@@]([H])(NC([C@H](CSSC[C@H](N1)C(N[C@H](C(O)=O)CCCNC(N)=N)=O)NC([C@H](CC(C)C)NC([C@H](CCCNC(N)=N)N)=O)=O)=O)CCCNC(N)=N)=O)[C@H](CC)C)=O)C(C)C)=O)C(C)C)=O)[C@@H](C)CC)=O)CCCNC(N)=N)=O)C(C)C.OC(C(F)(F)F)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Water 1.0 0.63

Preparing Stock Solutions

The following data is based on the product molecular weight 1597.9352 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Dilution Calculator

Calculate the dilution required to prepare a stock solution.

1: Shah P, Chen CS. Systematic Identification of Protein Targets of Sub5 Using Saccharomyces cerevisiae Proteome Microarrays. Int J Mol Sci. 2021 Jan 13;22(2):760. doi: 10.3390/ijms22020760. PMID: 33451135; PMCID: PMC7828587.

2: Munshi T, Sparrow A, Wren BW, Reljic R, Willcocks SJ. The Antimicrobial Peptide, Bactenecin 5, Supports Cell-Mediated but Not Humoral Immunity in the Context of a Mycobacterial Antigen Vaccine Model. Antibiotics (Basel). 2020 Dec 19;9(12):926. doi: 10.3390/antibiotics9120926. PMID: 33352656; PMCID: PMC7766334.

3: Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Highly efficient nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B. 2021 Jan 21;9(2):307-313. doi: 10.1039/d0tb02267e. PMID: 33289752.

4: Kopeikin PM, Zharkova MS, Kolobov AA, Smirnova MP, Sukhareva MS, Umnyakova ES, Kokryakov VN, Orlov DS, Milman BL, Balandin SV, Panteleev PV, Ovchinnikova TV, Komlev AS, Tossi A, Shamova OV. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Front Cell Infect Microbiol. 2020 Oct 19;10:552905. doi: 10.3389/fcimb.2020.552905. PMID: 33194795; PMCID: PMC7604311.

5: Konno H, Yasumiishi H, Aoki R, Nitanai I, Yano S. Detection of Thiol Functionality and Disulfide Bond Formation by Polyoxometalate. ACS Comb Sci. 2020 Dec 14;22(12):745-749. doi: 10.1021/acscombsci.0c00176. Epub 2020 Oct 8. PMID: 33030888.

6: Agarwal S, Saini AG, Dhawan S, Khadwal A, Sharma K, Singhi P. Comparative evaluation of IS6110 and protein antigen b PCR in cerebrospinal fluid for rapid diagnosis of tuberculous meningitis in children. J Med Microbiol. 2020 Jul;69(7):979-985. doi: 10.1099/jmm.0.001220. PMID: 32579099.

7: Lee MW, de Anda J, Kroll C, Bieniossek C, Bradley K, Amrein KE, Wong GCL. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study. Biochim Biophys Acta Biomembr. 2020 Aug 1;1862(8):183302. doi: 10.1016/j.bbamem.2020.183302. Epub 2020 Apr 18. PMID: 32311341.

8: Sun C, Gu L, Hussain MA, Chen L, Lin L, Wang H, Pang S, Jiang C, Jiang Z, Hou J. Characterization of the Bioactivity and Mechanism of Bactenecin Derivatives Against Food-Pathogens. Front Microbiol. 2019 Nov 5;10:2593. doi: 10.3389/fmicb.2019.02593. PMID: 31749789; PMCID: PMC6848382.

9: Cardoso MH, Meneguetti BT, Costa BO, Buccini DF, Oshiro KGN, Preza SLE, Carvalho CME, Migliolo L, Franco OL. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. Int J Mol Sci. 2019 Oct 1;20(19):4877. doi: 10.3390/ijms20194877. PMID: 31581426; PMCID: PMC6801614.

10: Lai PK, Tresnak DT, Hackel BJ. Identification and elucidation of proline- rich antimicrobial peptides with enhanced potency and delivery. Biotechnol Bioeng. 2019 Oct;116(10):2439-2450. doi: 10.1002/bit.27092. Epub 2019 Jul 21. PMID: 31209863; PMCID: PMC6726534.

11: Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Front Cell Infect Microbiol. 2019 Apr 30;9:128. doi: 10.3389/fcimb.2019.00128. PMID: 31114762; PMCID: PMC6503114.

12: Sim JY, Kim S, Lee J, Lim H, Kim HH, Park ZY, Kim JI. A significantly enhanced antibacterial spectrum of D-enantiomeric lipopeptide bactenecin. Biochem Biophys Res Commun. 2019 Jun 25;514(2):497-502. doi: 10.1016/j.bbrc.2019.04.153. Epub 2019 May 2. PMID: 31056261.

13: Bai X, Chen X. Rational design, conformational analysis and membrane- penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram- positive clinical strains isolated from pyemia. J Theor Biol. 2019 Jul 21;473:44-51. doi: 10.1016/j.jtbi.2019.03.018. Epub 2019 Mar 24. PMID: 30917919.

14: Malik S, Sharma K, Vaiphei K, Dhaka N, Berry N, Gupta P, Sharma M, Mallick B, Kochhar R, Sinha SK. Multiplex Polymerase Chain Reaction for diagnosis of gastrointestinal tuberculosis. JGH Open. 2018 Oct 17;3(1):32-37. doi: 10.1002/jgh3.12100. PMID: 30834338; PMCID: PMC6386748.

15: Reczyńska D, Witek B, Jarczak J, Czopowicz M, Mickiewicz M, Kaba J, Zwierzchowski L, Bagnicka E. The impact of organic vs. inorganic selenium on dairy goat productivity and expression of selected genes in milk somatic cells. J Dairy Res. 2019 Feb;86(1):48-54. doi: 10.1017/S0022029919000037. Epub 2019 Feb 13. PMID: 30758279.

16: Agrillo B, Balestrieri M, Gogliettino M, Palmieri G, Moretta R, Proroga YTR, Rea I, Cornacchia A, Capuano F, Smaldone G, De Stefano L. Functionalized Polymeric Materials with Bio-Derived Antimicrobial Peptides for "Active" Packaging. Int J Mol Sci. 2019 Jan 30;20(3):601. doi: 10.3390/ijms20030601. PMID: 30704080; PMCID: PMC6387462.

17: Price RL, Bugeon L, Mostowy S, Makendi C, Wren BW, Williams HD, Willcocks SJ. In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5. PLoS One. 2019 Jan 9;14(1):e0210508. doi: 10.1371/journal.pone.0210508. PMID: 30625198; PMCID: PMC6326515.

18: Lee H, Lee DG. SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli. Biochimie. 2019 Feb;157:195-203. doi: 10.1016/j.biochi.2018.12.001. Epub 2018 Dec 5. PMID: 30528927.

19: Li Y, Han W, Cao S, Hou J, Jiang Z, Jiang C, Wang H, Pang S. [Study on biological characteristics and stability of the linear derivative Bac2a from bactenecin]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Aug 25;34(4):572-577. Chinese. doi: 10.7507/1001-5515.201609002. PMID: 29745554.

20: Palmieri G, Balestrieri M, Capuano F, Proroga YTR, Pomilio F, Centorame P, Riccio A, Marrone R, Anastasio A. Bactericidal and antibiofilm activity of bactenecin-derivative peptides against the food-pathogen Listeria monocytogenes: New perspectives for food processing industry. Int J Food Microbiol. 2018 Aug 20;279:33-42. doi: 10.1016/j.ijfoodmicro.2018.04.039. Epub 2018 Apr 27. PMID: 29727856.