Xylotriose
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 464817

CAS#: 47592-59-6

Description: Xylotriose is a xylooligosaccharide that has been found in corn and various agricultural wastes.


Chemical Structure

img
Xylotriose
CAS# 47592-59-6

Theoretical Analysis

MedKoo Cat#: 464817
Name: Xylotriose
CAS#: 47592-59-6
Chemical Formula: C15H26O13
Exact Mass: 414.14
Molecular Weight: 414.360
Elemental Analysis: C, 43.48; H, 6.32; O, 50.19

Price and Availability

Size Price Availability Quantity
100mg USD -2 2 Weeks
200mg USD -2 2 Weeks
500mg USD -2 2 Weeks
1g USD -2 2 Weeks
2g USD -2 2 Weeks
5mg USD 260 2 Weeks
10mg USD 440 2 Weeks
25mg USD 810 2 Weeks
50mg USD 1280 2 Weeks
Bulk inquiry

Synonym: Xylotriose;

IUPAC/Chemical Name: (2R,3R,4R)-4-(((2S,3R,4R,5R)-3,4-dihydroxy-5-(((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-2,3,5-trihydroxypentanal

InChi Key: ABKNGTPZXRUSOI-JFMIBIRXSA-N

InChi Code: InChI=1S/C15H26O13/c16-1-5(18)9(20)7(2-17)27-15-13(24)11(22)8(4-26-15)28-14-12(23)10(21)6(19)3-25-14/h1,5-15,17-24H,2-4H2/t5-,6+,7+,8+,9+,10-,11-,12+,13+,14-,15-/m0/s1

SMILES Code: O[C@@H]1[C@@H](O)[C@H](O[C@@H]([C@@H]([C@H](C=O)O)O)CO)OC[C@H]1O[C@H]2[C@H](O)[C@@H](O)[C@H](O)CO2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 30.0 72.40
DMSO 30.0 72.40
PBS (pH 7.2) 10.0 24.13

Preparing Stock Solutions

The following data is based on the product molecular weight 414.36 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Kim SK, Russell J, Cha M, Himmel ME, Bomble YJ, Westpheling J. Co-expression of a β-d-xylosidase from Thermotoga maritima and a Family 10 xylanase from A. cellulolyticus significantly improves the xylan degrading activity of the Caldicellulosiruptor bescii exoproteome. Appl Environ Microbiol. 2021 May 14:AEM.00524-21. doi: 10.1128/AEM.00524-21. Epub ahead of print. PMID: 33990300.

2: Seekram P, Thammasittirong A, Thammasittirong SN. Evaluation of spent mushroom substrate after cultivation of Pleurotus ostreatus as a new raw material for xylooligosaccharides production using crude xylanases from Aspergillus flavus KUB2. 3 Biotech. 2021 Apr;11(4):176. doi: 10.1007/s13205-021-02725-8. Epub 2021 Mar 19. PMID: 33927967; PMCID: PMC7979848.

3: Valladares-Diestra KK, Porto de Souza Vandenberghe L, Soccol CR. A biorefinery approach for enzymatic complex production for the synthesis of xylooligosaccharides from sugarcane bagasse. Bioresour Technol. 2021 Aug;333:125174. doi: 10.1016/j.biortech.2021.125174. Epub 2021 Apr 16. PMID: 33892428.

4: Cebin AV, Ralet MC, Vigouroux J, Karača S, Martinić A, Komes D, Bonnin E. Valorisation of walnut shell and pea pod as novel sources for the production of xylooligosaccharides. Carbohydr Polym. 2021 Jul 1;263:117932. doi: 10.1016/j.carbpol.2021.117932. Epub 2021 Mar 17. PMID: 33858566.

5: Jang SK, Kim JH, Choi JH, Cho SM, Kim JC, Kim H, Choi IG. Evaluation of Xylooligosaccharides Production for a Specific Degree of Polymerization by Liquid Hot Water Treatment of Tropical Hardwood. Foods. 2021 Feb 20;10(2):463. doi: 10.3390/foods10020463. PMID: 33672511; PMCID: PMC7923788.

6: Vacilotto MM, Sepulchro AGV, Pellegrini VOA, Polikarpov I. Production of prebiotic xylooligosaccharides from arabino- and glucuronoxylan using a two- domain Jonesia denitrificans xylanase from GH10 family. Enzyme Microb Technol. 2021 Mar;144:109743. doi: 10.1016/j.enzmictec.2021.109743. Epub 2021 Jan 12. PMID: 33541577.

7: Teramoto K, Tsutsui S, Sato T, Fujimoto Z, Kaneko S. Substrate Specificities of GH8, GH39, and GH52 β-xylosidases from Bacillus halodurans C-125 Toward Substituted Xylooligosaccharides. Appl Biochem Biotechnol. 2021 Apr;193(4):1042-1055. doi: 10.1007/s12010-020-03451-2. Epub 2021 Jan 4. PMID: 33394289.

8: Brandt SC, Ellinger B, van Nguyen T, Harder S, Schlüter H, Hahnke RL, Rühl M, Schäfer W, Gand M. Aspergillus sydowii: Genome Analysis and Characterization of Two Heterologous Expressed, Non-redundant Xylanases. Front Microbiol. 2020 Sep 18;11:2154. doi: 10.3389/fmicb.2020.573482. PMID: 33071998; PMCID: PMC7531221.

9: Sepulchro AGV, Pellegrini VOA, Briganti L, de Araujo EA, de Araujo SS, Polikarpov I. Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase. Carbohydr Polym. 2020 Nov 1;247:116714. doi: 10.1016/j.carbpol.2020.116714. Epub 2020 Jul 3. PMID: 32829841.

10: Gérard D, Méline T, Muzard M, Deleu M, Plantier-Royon R, Rémond C. Enzymatically-synthesized xylo-oligosaccharides laurate esters as surfactants of interest. Carbohydr Res. 2020 Sep;495:108090. doi: 10.1016/j.carres.2020.108090. Epub 2020 Jul 18. PMID: 32807358.

11: Huang CM, Chuang WY, Lin WC, Lin LJ, Chang SC, Lee TT. Production performances and antioxidant activities of laying hens fed Aspergillus oryzae and phytase co-fermented wheat bran. Anim Biosci. 2021 Mar;34(3):371-384. doi: 10.5713/ajas.20.0116. Epub 2020 May 12. PMID: 32777910; PMCID: PMC7961196.

12: Fan G, Wu Q, Li Q, Sun B, Ma Y, Wu K, Wang C, Teng C, Yang R, Li X. Impact of the disulfide bond on hydrolytic characteristics of a xylanase from Talaromyces thermophiles F1208. Int J Biol Macromol. 2020 Dec 1;164:1748-1757. doi: 10.1016/j.ijbiomac.2020.07.270. Epub 2020 Aug 7. PMID: 32777426.

13: Si D, Shang T, Liu X, Zheng Z, Hu Q, Hu C, Zhang R. Production and characterization of functional wheat bran hydrolysate rich in reducing sugars, xylooligosaccharides and phenolic acids. Biotechnol Rep (Amst). 2020 Jul 24;27:e00511. doi: 10.1016/j.btre.2020.e00511. PMID: 32775234; PMCID: PMC7397401.

14: Brenelli LB, Figueiredo FL, Damasio A, Franco TT, Rabelo SC. An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: From lab to pilot scale. Bioresour Technol. 2020 Oct;313:123637. doi: 10.1016/j.biortech.2020.123637. Epub 2020 Jun 6. PMID: 32535521.

15: Mamiya A, Sakka M, Kosugi A, Katsuzaki H, Tanaka A, Kunitake E, Kimura T, Sakka K. Significance of a family-6 carbohydrate-binding module in a modular feruloyl esterase for removing ferulic acid from insoluble wheat arabinoxylan. Enzyme Microb Technol. 2020 Aug;138:109546. doi: 10.1016/j.enzmictec.2020.109546. Epub 2020 Mar 12. PMID: 32527521.

16: Skariyachan S, Khangwal I, Niranjan V, Kango N, Shukla P. Deciphering effectual binding potential of xylo-substrates towards xylose isomerase and xylokinase through molecular docking and molecular dynamic simulation. J Biomol Struct Dyn. 2020 Jun 8:1-10. doi: 10.1080/07391102.2020.1772882. Epub ahead of print. PMID: 32508225.

17: Zhang X, Zhang W, Lei F, Yang S, Jiang J. Coproduction of xylooligosaccharides and fermentable sugars from sugarcane bagasse by seawater hydrothermal pretreatment. Bioresour Technol. 2020 Aug;309:123385. doi: 10.1016/j.biortech.2020.123385. Epub 2020 Apr 17. PMID: 32325380.

18: Li C, Kumar A, Luo X, Shi H, Liu Z, Wu G. Highly alkali-stable and cellulase-free xylanases from Fusarium sp. 21 and their application in clarification of orange juice. Int J Biol Macromol. 2020 Jul 15;155:572-580. doi: 10.1016/j.ijbiomac.2020.03.249. Epub 2020 Apr 1. PMID: 32246958.

19: Kobayashi M, Kumagai Y, Yamamoto Y, Yasui H, Kishimura H. Identification of a Key Enzyme for the Hydrolysis of β-(1→3)-Xylosyl Linkage in Red Alga Dulse Xylooligosaccharide from Bifidobacterium Adolescentis. Mar Drugs. 2020 Mar 20;18(3):174. doi: 10.3390/md18030174. PMID: 32245121; PMCID: PMC7142710.

20: Zheng F, Song L, Basit A, Liu J, Miao T, Wen J, Cao Y, Jiang W. An endoxylanase rapidly hydrolyzes xylan into major product xylobiose via transglycosylation of xylose to xylotriose or xylotetraose. Carbohydr Polym. 2020 Jun 1;237:116121. doi: 10.1016/j.carbpol.2020.116121. Epub 2020 Mar 4. PMID: 32241400.