ALC-0315
new
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 556006

CAS#: 2036272-55-4

Description: ALC-0315 is a synthetic cationic lipid (or ionizable lipid). It is a colorless oily material, It has attracted attention as a component of the SARS-CoV-2 vaccine, BNT162b2, from BioNTech and Pfizer. Specifically, it is one of four components that form lipid nanoparticles (LNPs), which encapsulate and protect the otherwise fragile mRNA that is the active ingredient in these drugs. These nanoparticles promote the uptake of therapeutically effective nucleic acids such as oligonucleotides or mRNA both in vitro and in vivo. At physiological pH, ALC-0315 becomes protonated at the nitrogen atom, yielding an ammonium cation that is attracted to the messenger RNA (mRNA), which is anionic. (https://en.wikipedia.org/wiki/ALC-0315)


Chemical Structure

img
ALC-0315
CAS# 2036272-55-4

Theoretical Analysis

MedKoo Cat#: 556006
Name: ALC-0315
CAS#: 2036272-55-4
Chemical Formula: C48H95NO5
Exact Mass: 765.72
Molecular Weight: 766.290
Elemental Analysis: C, 75.24; H, 12.50; N, 1.83; O, 10.44

Price and Availability

Size Price Availability Quantity
25mg USD 150 Ready to ship
50mg USD 250 Ready to ship
100mg USD 450 Ready to ship
200mg USD 750 Ready to ship
500mg USD 1650 Ready to ship
1g USD 2950 Ready to ship
2g USD 5250 Ready to ship
Bulk inquiry

Synonym: ALC-0315; ALC 0315; ALC0315;

IUPAC/Chemical Name: [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate)

InChi Key: QGWBEETXHOVFQS-UHFFFAOYSA-N

InChi Code: InChI=1S/C48H95NO5/c1-5-9-13-17-19-27-37-45(35-25-15-11-7-3)47(51)53-43-33-23-21-29-39-49(41-31-32-42-50)40-30-22-24-34-44-54-48(52)46(36-26-16-12-8-4)38-28-20-18-14-10-6-2/h45-46,50H,5-44H2,1-4H3

SMILES Code: OCCCCN(CCCCCCOC(C(CCCCCC)CCCCCCCC)=O)CCCCCCOC(C(CCCCCC)CCCCCCCC)=O

Appearance: Colorless to light yellow oily liquid

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Chloroform (50mg/mL) and ethanol (100mg/mL)

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target: ALC-0315 is a synthetic cationic lipid (or ionizable lipid).
In vitro activity: TBD
In vivo activity: TBD

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
chloroform 50.0 65.25
ethanol 100.0 130.51
DMSO 50.0 65.25

Preparing Stock Solutions

The following data is based on the product molecular weight 766.29 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: TBD
In vitro protocol: TBD
In vivo protocol: TBD

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm. 2022 Jul 4;19(7):2175-2182. doi: 10.1021/acs.molpharmaceut.2c00033. Epub 2022 May 31. PMID: 35642083; PMCID: PMC9621687.


2: Chen J, Ye Z, Huang C, Qiu M, Song D, Li Y, Xu Q. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2207841119. doi: 10.1073/pnas.2207841119. Epub 2022 Aug 15. PMID: 35969778; PMCID: PMC9407666.


3: Saadati F, Cammarone S, Ciufolini MA. A Route to Lipid ALC-0315: a Key Component of a COVID-19 mRNA Vaccine. Chemistry. 2022 Aug 26;28(48):e202200906. doi: 10.1002/chem.202200906. Epub 2022 Jul 4. PMID: 35665545; PMCID: PMC9348069.


4: Moghimi SM. Allergic Reactions and Anaphylaxis to LNP-Based COVID-19 Vaccines. Mol Ther. 2021 Mar 3;29(3):898-900. doi: 10.1016/j.ymthe.2021.01.030. Epub 2021 Feb 5. PMID: 33571463; PMCID: PMC7862013.


5: Morais P, Adachi H, Yu YT. The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. Front Cell Dev Biol. 2021 Nov 4;9:789427. doi: 10.3389/fcell.2021.789427. PMID: 34805188; PMCID: PMC8600071.


6: Ly HH, Daniel S, Soriano SKV, Kis Z, Blakney AK. Optimization of Lipid Nanoparticles for saRNA Expression and Cellular Activation Using a Design-of- Experiment Approach. Mol Pharm. 2022 Jun 6;19(6):1892-1905. doi: 10.1021/acs.molpharmaceut.2c00032. Epub 2022 May 23. PMID: 35604765; PMCID: PMC9176215.


7: Boldyrev IA, Shendrikov VP, Vostrova AG, Vodovozova EL. A Route to Synthesize Ionizable Lipid ALC-0315, a Key Component of the mRNA Vaccine Lipid Matrix. Russ J Bioorg Chem. 2023;49(2):412-415. doi: 10.1134/S1068162023020061. Epub 2023 May 19. PMID: 37252003; PMCID: PMC10197038.


8: Trollmann MFW, Böckmann RA. mRNA lipid nanoparticle phase transition. Biophys J. 2022 Oct 18;121(20):3927-3939. doi: 10.1016/j.bpj.2022.08.037. Epub 2022 Aug 31. PMID: 36045573; PMCID: PMC9674992.


9: Ermilova I, Swenson J. Ionizable lipids penetrate phospholipid bilayers with high phase transition temperatures: perspectives from free energy calculations. Chem Phys Lipids. 2023 Jul;253:105294. doi: 10.1016/j.chemphyslip.2023.105294. Epub 2023 Mar 31. PMID: 37003484.


10: Qin S, Huang H, Xiao W, Chen K, He X, Tang X, Huang Z, Zhang Y, Duan X, Fan N, Zheng Q, Wu M, Lu G, Wei Y, Wei X, Song X. A novel heterologous receptor- binding domain dodecamer universal mRNA vaccine against SARS-CoV-2 variants. Acta Pharm Sin B. 2023 Jan 12. doi: 10.1016/j.apsb.2023.01.010. Epub ahead of print. PMID: 36647424; PMCID: PMC9833852.


11: Lam K, Leung A, Martin A, Wood M, Schreiner P, Palmer L, Daly O, Zhao W, McClintock K, Heyes J. Unsaturated, Trialkyl Ionizable Lipids are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications. Adv Mater. 2023 Apr;35(15):e2209624. doi: 10.1002/adma.202209624. Epub 2023 Mar 5. PMID: 36680477.


12: Radice A, Fassio F, Meucci E, Iorno MCL, Macchia D. Potential culprits for immediate hypersensitivity reactions to BNT162b2 mRNA COVID-19 vaccine: not just PEG. Eur Ann Allergy Clin Immunol. 2021 Sep;53(5):240-242. doi: 10.23822/EurAnnACI.1764-1489.214. Epub 2021 Apr 29. PMID: 33913314.


13: Du S, Li W, Zhang Y, Xue Y, Hou X, Yan J, Cheng J, Deng B, McComb DW, Lin J, Zeng H, Cheng X, Irvine DJ, Weiss R, Dong Y. Cholesterol-Amino-Phosphate (CAP) Derived Lipid Nanoparticles for Delivery of Self-Amplifying RNA and Restoration of Spermatogenesis in Infertile Mice. Adv Sci (Weinh). 2023 Apr;10(11):e2300188. doi: 10.1002/advs.202300188. Epub 2023 Feb 7. PMID: 36748274; PMCID: PMC10104632.


14: Yu SY, Carlaw T, Thomson T, Birkenshaw A, Basha G, Kurek D, Huang C, Kulkarni J, Zhang LH, Ross CJD. A luciferase reporter mouse model to optimize in vivo gene editing validated by lipid nanoparticle delivery of adenine base editors. Mol Ther. 2023 Apr 5;31(4):1159-1166. doi: 10.1016/j.ymthe.2023.02.009. Epub 2023 Feb 15. PMID: 36793209; PMCID: PMC10124072.

1. Xue Y, Zhang Y, Zhong Y, Du S, Hou X, Li W, Li H, Wang S, Wang C, Yan J, Kang DD, Deng B, McComb DW, Irvine DJ, Weiss R, Dong Y. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat Commun. 2024 Jan 25;15(1):739. doi: 10.1038/s41467-024-45094-5. PMID: 38272900; PMCID: PMC10811230.

2. Zhang W, Pfeifle A, Lansdell C, Frahm G, Cecillon J, Tamming L, Gravel C, Gao J, Thulasi Raman SN, Wang L, Sauve S, Rosu-Myles M, Li X, Johnston MJW. The Expression Kinetics and Immunogenicity of Lipid Nanoparticles Delivering Plasmid DNA and mRNA in Mice. Vaccines (Basel). 2023 Oct 11;11(10):1580. doi: 10.3390/vaccines11101580. PMID: 37896985; PMCID: PMC10610642.