WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 111537

CAS#: 58-68-4 (reduced)

Description: NADH is the reduced form of NAD, or nicotinamide adenine dinucleotide. NADH is used as a reducing agent to donate electrons in metabolic reactions.

Chemical Structure

CAS# 58-68-4 (reduced)

Theoretical Analysis

MedKoo Cat#: 111537
Name: NADH
CAS#: 58-68-4 (reduced)
Chemical Formula: C21H29N7O14P2
Exact Mass: 665.12
Molecular Weight: 665.450
Elemental Analysis: C, 37.90; H, 4.39; N, 14.73; O, 33.66; P, 9.31

Price and Availability

Size Price Availability Quantity
1g USD 950 2 Weeks
2g USD 1650 2 Weeks
5g USD 3650 2 Weeks
10g USD 5450 2 Weeks
Bulk inquiry

Related CAS #: 53-84-9 (free acid)   20111-18-6 (sodium)   58-68-4 (reduced)    

Synonym: beta-NADH; beta NADH; coenzyme 1, reduced; coenzyme 1 reduced; reduced NAD; reduced NAD+

IUPAC/Chemical Name: 1-((2R,3R,4S,5R)-5-((((((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)(hydroxy)phosphoryl)oxy)methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-1,4-dihydropyridine-3-carbimidic acid


InChi Code: InChI=1S/C21H29N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1,3-4,7-8,10-11,13-16,20-21,29-32H,2,5-6H2,(H2,23,33)(H,34,35)(H,36,37)(H2,22,24,25)/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1

SMILES Code: NC(C1=CN([C@@H]2O[C@@H]([C@H]([C@H]2O)O)COP(O)(OP(O)(OC[C@H]3O[C@@H](n(cn4)c5c4c(N)ncn5)[C@@H]([C@@H]3O)O)=O)=O)C=CC1)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 665.45 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Dilution Calculator

Calculate the dilution required to prepare a stock solution.

1: Babkina AS, Sundukov DV, Golubev AM. Sudebno-meditsinskoe znachenie vzaimosvyazi aktivnosti proteoliticheskikh fermentov i dinamiki intensivnosti fluorestsentsii kofermentov NADH i FAD v skeletnoi myshtse pri diagnostike davnosti nastupleniya smerti (eksperimental'noe issledovanie) [The forensic implications of the relationship between the proteolytic enzymes activity and the changes in NADH and FAD fluorescence intensity in skeletal muscle when determining the time of death (experimental study)]. Sud Med Ekspert. 2021;64(3):24-28. Russian. doi: 10.17116/sudmed20216403124. PMID: 34013691.

2: Cao X, Ye X, Zhang S, Wang L, Xu Y, Peng S, Zhou Y, Peng Y, Li J, Zhang X, Han X, Huang WY, Jia W, Ye J. ADP Induces Blood Glucose Through Direct and Indirect Mechanisms in Promotion of Hepatic Gluconeogenesis by Elevation of NADH. Front Endocrinol (Lausanne). 2021 Apr 27;12:663530. doi: 10.3389/fendo.2021.663530. PMID: 33986729; PMCID: PMC8111448.

3: Vitvitsky V, Kumar R, Libiad M, Maebius A, Landry A, Banerjee R. The mitochondrial NADH pool is involved in hydrogen sulfide signaling and stimulation of aerobic glycolysis. J Biol Chem. 2021 Apr 29:100736. doi: 10.1016/j.jbc.2021.100736. Epub ahead of print. PMID: 33933447.

4: Meng H, Zhang W, Zhu H, Yang F, Zhang Y, Zhou J, Li Y. Over-expression of an electron transport protein OmcS provides sufficient NADH for D-lactate production in cyanobacterium. Biotechnol Biofuels. 2021 Apr 29;14(1):109. doi: 10.1186/s13068-021-01956-4. PMID: 33926521; PMCID: PMC8082822.

5: Liu BW, Huang PC, Wu FY. A novel light-controlled colorimetric detection assay for nitroreductase based on p-aminophenol-catalyzed and NADH- mediated synthesis of silver nanoparticles. Anal Methods. 2021 May 20;13(19):2223-2228. doi: 10.1039/d1ay00231g. PMID: 33908472.

6: Qi S, Jin Z, Jian Y, Hou Y, Li C, Zhao Y, Wang X, Zhou Q. Photo-induced mitochondrial DNA damage and NADH depletion by -NO2 modified Ru(II) complexes. Chem Commun (Camb). 2021 Apr 27;57(34):4162-4165. doi: 10.1039/d1cc00258a. PMID: 33908442.

7: Liu X, Feng W, Yao F, Zhang J, Ayesha R, Chen T, Shi X, Qiao X, Ma L, Yu S, Kang XF. Biomimetic Molecular Clamp Nanopores for Simultaneous Quantifications of NAD+ and NADH. Anal Chem. 2021 May 11;93(18):7118-7124. doi: 10.1021/acs.analchem.1c00986. Epub 2021 Apr 27. PMID: 33905222.

8: Wang M, Weber A, Hartig R, Zheng Y, Krafft D, Vidaković-Koch T, Zuschratter W, Ivanov I, Sundmacher K. Scale up of Transmembrane NADH Oxidation in Synthetic Giant Vesicles. Bioconjug Chem. 2021 May 19;32(5):897-903. doi: 10.1021/acs.bioconjchem.1c00096. Epub 2021 Apr 27. PMID: 33902282.

9: Dahadhah FW, Jaweesh MS, Al Zoubi MS, Alarjah MIA, Hammadeh ME, Amor H. Mitochondrial nicotinamide adenine dinucleotide hydride dehydrogenase (NADH) subunit 4 (MTND4) polymorphisms and their association with male infertility. J Assist Reprod Genet. 2021 Apr 24. doi: 10.1007/s10815-021-02199-w. Epub ahead of print. PMID: 33895935.

10: Molina BG, Del Valle LJ, Casanovas J, Lanzalaco S, Pérez-Madrigal MM, Turon P, Armelin E, Alemán C. Plasma-Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing. Adv Healthc Mater. 2021 Apr 24:e2100425. doi: 10.1002/adhm.202100425. Epub ahead of print. PMID: 33893723.

11: Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Patra BC, Sarkar BK, Banerjee S, Banerjee K, Lee SS. Understanding the molecular evolution of tiger diversity through DNA barcoding marker ND4 and NADH dehydrogenase complex using computational biology. Genes Genomics. 2021 Apr 21. doi: 10.1007/s13258-021-01089-w. Epub ahead of print. PMID: 33884571.

12: Zhou Q, Gao J, Zhang YW. Optimal pH shift of the NADH oxidase from Lactobacillus rhamnosus with a single mutation. Biotechnol Lett. 2021 Apr 12. doi: 10.1007/s10529-021-03129-7. Epub ahead of print. PMID: 33844097.

13: Hirakawa K, Mori M. Phenothiazine Dyes Induce NADH Photooxidation through Electron Transfer: Kinetics and the Effect of Copper Ions. ACS Omega. 2021 Mar 17;6(12):8630-8636. doi: 10.1021/acsomega.1c00484. PMID: 33817524; PMCID: PMC8015084.

14: Höhner R, Day PM, Zimmermann SE, Lopez LS, Krämer M, Giavalisco P, Correa Galvis V, Armbruster U, Schöttler MA, Jahns P, Krueger S, Kunz HH. Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance. Plant Physiol. 2021 Jan 13:kiaa117. doi: 10.1093/plphys/kiaa117. Epub ahead of print. PMID: 33779763.

15: Shabdar S, Anaclet B, Castineiras AG, Desir N, Choe N, Crane EJ 3rd, Sazinsky MH. Structural and Kinetic Characterization of Hyperthermophilic NADH- Dependent Persulfide Reductase from Archaeoglobus fulgidus. Archaea. 2021 Mar 9;2021:8817136. doi: 10.1155/2021/8817136. PMID: 33776585; PMCID: PMC7969121.

16: Freymüller C, Kalinina S, Rück A, Sroka R, Rühm A. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD. J Biophotonics. 2021 Mar 22:e202100024. doi: 10.1002/jbio.202100024. Epub ahead of print. PMID: 33749988.

17: Chen H, Yu J, Men X, Zhang J, Ding Z, Jiang Y, Wu C, Chiu DT. Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angew Chem Int Ed Engl. 2021 May 17;60(21):12007-12012. doi: 10.1002/anie.202100774. Epub 2021 Apr 16. PMID: 33730372; PMCID: PMC8119375.

18: Cao Y, Sun C, Wen H, Wang M, Zhu P, Zhong M, Li J, Chen X, Tang Y, Wang J, Zhou B. A Yeast-Based Drug Discovery Platform To Identify Plasmodium falciparum Type II NADH Dehydrogenase Inhibitors. Antimicrob Agents Chemother. 2021 May 18;65(6):e02470-20. doi: 10.1128/AAC.02470-20. PMID: 33722883.

19: Plapp BV, Subramanian R. Alternative binding modes in abortive NADH-alcohol complexes of horse liver alcohol dehydrogenase. Arch Biochem Biophys. 2021 Apr 15;701:108825. doi: 10.1016/ Epub 2021 Mar 3. PMID: 33675814; PMCID: PMC7980771.

20: Verkaart S, Koopman WJ, Cheek J, van Emst-de Vries SE, van den Heuvel LW, Smeitink JA, Willems PH. Corrigendum to "Mitochondrial and cytosolic thiol redox state are not detectably altered in isolated human NADH:ubiquinone oxidoreductase deficiency" [Biochim. Biophys. Acta. 2007;1772(9):1041-1051. PMID: 17600689]. Biochim Biophys Acta Mol Basis Dis. 2021 Jun 1;1867(6):166105. doi: 10.1016/j.bbadis.2021.166105. Epub 2021 Mar 2. Erratum for: Biochim Biophys Acta. 2007 Sep;1772(9):1041-51. PMID: 33674178.