NADP+

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 111536

CAS#: 604-79-5 (oxidized)

Description: NADP+ is the oxidized form of NADPH. NADP+ is a fundamental cofactor and electron carrier in metabolic reactions.


Chemical Structure

img
NADP+
CAS# 604-79-5 (oxidized)

Theoretical Analysis

MedKoo Cat#: 111536
Name: NADP+
CAS#: 604-79-5 (oxidized)
Chemical Formula: C21H29N7O17P3+
Exact Mass: 744.08
Molecular Weight: 744.420
Elemental Analysis: C, 33.88; H, 3.93; N, 13.17; O, 36.54; P, 12.48

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Related CAS #: 53-57-6 (reduced)   604-79-5 (oxidized)   53-59-8 (free)   1184-16-3 (sodium)   100929-71-3 (ammonium)   24294-60-2 (disodium)  

Synonym: NAD(P)+; nicotinamide-adenine-dinucleotide phosphate, reduced; nicotinamide adenine dinucleotide phosphate, reduced; nicotinamide-adenine dinucleotide phosphate, reduced

IUPAC/Chemical Name: 1-((2R,3R,4S,5R)-5-((((((((2R,3R,4R,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxy-4-(phosphonooxy)tetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)(hydroxy)phosphoryl)oxy)methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-3-(hydroxy(imino)methyl)pyridin-1-ium

InChi Key: XJLXINKUBYWONI-NNYOXOHSSA-O

InChi Code: InChI=1S/C21H28N7O17P3/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(44-46(33,34)35)14(30)11(43-21)6-41-48(38,39)45-47(36,37)40-5-10-13(29)15(31)20(42-10)27-3-1-2-9(4-27)18(23)32/h1-4,7-8,10-11,13-16,20-21,29-31H,5-6H2,(H7-,22,23,24,25,32,33,34,35,36,37,38,39)/p+1/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1

SMILES Code: NC1=C(N=CN2[C@@]3([H])[C@@](OP(O)(O)=O)([H])[C@@](O)([H])[C@@](O3)([H])COP(O)(OP(O)(OC[C@](O4)([H])[C@](O)([H])[C@](O)([H])[C@]4([H])[N+]5=CC=CC(C(O)=N)=C5)=O)=O)C2=NC=N1

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 744.42 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Sirdah M, Reading NS, Vankayalapati H, Prchal JT. A computational study of structural differences of binding of NADP+ and G6P substrates to G6PD Mediterraneanc.563T, G6PD A-c.202A/c.376G, G6PD Cairoc.404C and G6PD Gazac.536A mutations. Blood Cells Mol Dis. 2021 Apr 27;89:102572. doi: 10.1016/j.bcmd.2021.102572. Epub ahead of print. PMID: 33957359.

2: Tang W, Wu M, Qin N, Liu L, Meng R, Wang C, Wang P, Zang J, Zhu G. Crystal structures of NAD+-linked isocitrate dehydrogenase from the green alga Ostreococcus tauri and its evolutionary relationship with eukaryotic NADP+-linked homologs. Arch Biochem Biophys. 2021 May 3:108898. doi: 10.1016/j.abb.2021.108898. Epub ahead of print. PMID: 33957092.

3: Asanović I, Strandback E, Kroupova A, Pasajlic D, Meinhart A, Tsung-Pin P, Djokovic N, Anrather D, Schuetz T, Suskiewicz MJ, Sillamaa S, Köcher T, Beveridge R, Nikolic K, Schleiffer A, Jinek M, Hartl M, Clausen T, Penninger J, Macheroux P, Weitzer S, Martinez J. The oxidoreductase PYROXD1 uses NAD(P)+ as an antioxidant to sustain tRNA ligase activity in pre-tRNA splicing and unfolded protein response. Mol Cell. 2021 Apr 23:S1097-2765(21)00312-9. doi: 10.1016/j.molcel.2021.04.007. Epub ahead of print. PMID: 33930333.

4: Zifruddin AN, Mohamad-Khalid KA, Suhaimi SA, Mohamed-Hussein ZA, Hassan M. Molecular characterization and enzyme inhibition studies of NADP+- farnesol dehydrogenase from diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Biosci Biotechnol Biochem. 2021 Apr 23:zbab072. doi: 10.1093/bbb/zbab072. Epub ahead of print. PMID: 33890631.

5: Tran DH, Kesavan R, Rion H, Soflaee MH, Solmonson A, Bezwada D, Vu HS, Cai F, Phillips JA 3rd, DeBerardinis RJ, Hoxhaj G. Mitochondrial NADP+ is essential for proline biosynthesis during cell growth. Nat Metab. 2021 Apr;3(4):571-585. doi: 10.1038/s42255-021-00374-y. Epub 2021 Apr 8. PMID: 33833463.

6: Tsevelkhorloo M, Kim SH, Kang DK, Lee CR, Hong SK. NADP+-dependent dehydrogenase SCO3486 and cycloisomerase SCO3480 are key enzymes for 3,6-anhydro-L-galactose catabolism in Streptomyces coelicolor A3(2). J Microbiol Biotechnol. 2021 Apr 6. doi: 10.4014/jmb.2103.03030. Epub ahead of print. PMID: 33820885.

7: Zhuang B, Seo D, Aleksandrov A, Vos MH. Characterization of Light-Induced, Short-Lived Interacting Radicals in the Active Site of Flavoprotein Ferredoxin- NADP+ Oxidoreductase. J Am Chem Soc. 2021 Feb 24;143(7):2757-2768. doi: 10.1021/jacs.0c09627. Epub 2021 Feb 16. PMID: 33591179.

8: Hsieh JY, Yang HP, Tewary SK, Cheng HC, Liu YL, Tai SC, Chen WL, Hsu CH, Huang TJ, Chou CJ, Huang YN, Peng CT, Ho MC, Liu GY, Hung HC. Single nucleotide variants lead to dysregulation of the human mitochondrial NAD(P)+-dependent malic enzyme. iScience. 2021 Jan 13;24(2):102034. doi: 10.1016/j.isci.2021.102034. PMID: 33554057; PMCID: PMC7847962.

9: Bicego R, Francisco A, Ruas JS, Siqueira-Santos ES, Castilho RF. Undesirable effects of chemical inhibitors of NAD(P)+ transhydrogenase on mitochondrial respiratory function. Arch Biochem Biophys. 2020 Oct 15;692:108535. doi: 10.1016/j.abb.2020.108535. Epub 2020 Aug 8. PMID: 32781052.

10: Nam TS, Park DR, Rah SY, Woo TG, Chung HT, Brenner C, Kim UH. Interleukin-8 drives CD38 to form NAADP from NADP+ and NAAD in the endolysosomes to mobilize Ca2+ and effect cell migration. FASEB J. 2020 Sep;34(9):12565-12576. doi: 10.1096/fj.202001249R. Epub 2020 Jul 27. PMID: 32717131.

11: Morales-Luna L, Hernández-Ochoa B, Ramírez-Nava EJ, Martínez-Rosas V, Ortiz- Ramírez P, Fernández-Rosario F, González-Valdez A, Cárdenas-Rodríguez N, Serrano-Posada H, Centeno-Leija S, Arreguin-Espinosa R, Cuevas-Cruz M, Ortega- Cuellar D, Pérez de la Cruz V, Rocha-Ramírez LM, Sierra-Palacios E, Castillo- Rodríguez RA, Vega-García V, Rufino-González Y, Marcial-Quino J, Gómez-Manzo S. Characterizing the Fused TvG6PD::6PGL Protein from the Protozoan Trichomonas vaginalis, and Effects of the NADP+ Molecule on Enzyme Stability. Int J Mol Sci. 2020 Jul 8;21(14):4831. doi: 10.3390/ijms21144831. PMID: 32650494; PMCID: PMC7402283.

12: Akita H, Nakamichi Y, Morita T, Matsushika A. Characterization of an NAD(P)+-dependent meso-diaminopimelate dehydrogenase from Thermosyntropha lipolytica. Biochim Biophys Acta Proteins Proteom. 2020 Oct;1868(10):140476. doi: 10.1016/j.bbapap.2020.140476. Epub 2020 Jun 26. PMID: 32599299.

13: Awadasseid A, Li W, Liu Z, Qiao C, Pang J, Zhang G, Luo Y. Characterization of Camptotheca acuminata 10-hydroxygeraniol oxidoreductase and iridoid synthase and their application in biological preparation of nepetalactol in Escherichia coli featuring NADP+ - NADPH cofactors recycling. Int J Biol Macromol. 2020 Nov 1;162:1076-1085. doi: 10.1016/j.ijbiomac.2020.06.223. Epub 2020 Jun 26. PMID: 32599240.

14: Akita H, Nakamichi Y, Morita T, Matsushika A. Identification and functional characterization of NAD(P)+ -dependent meso-diaminopimelate dehydrogenase from Numidum massiliense. Microbiologyopen. 2020 Aug;9(8):e1059. doi: 10.1002/mbo3.1059. Epub 2020 Jun 2. PMID: 32485072; PMCID: PMC7424261.

15: Smolková K, Špačková J, Gotvaldová K, Dvořák A, Křenková A, Hubálek M, Holendová B, Vítek L, Ježek P. SIRT3 and GCN5L regulation of NADP+- and NADPH- driven reactions of mitochondrial isocitrate dehydrogenase IDH2. Sci Rep. 2020 May 26;10(1):8677. doi: 10.1038/s41598-020-65351-z. PMID: 32457458; PMCID: PMC7250847.

16: Lesanavičius M, Aliverti A, Šarlauskas J, Čėnas N. Reactions of Plasmodium falciparum Ferredoxin:NADP+ Oxidoreductase with Redox Cycling Xenobiotics: A Mechanistic Study. Int J Mol Sci. 2020 May 2;21(9):3234. doi: 10.3390/ijms21093234. PMID: 32370303; PMCID: PMC7247349.

17: Rac A, Fulgosi H. Qualitative and quantitative dataset of TROL protein interaction with C3 and C4 ferredoxin: NADP+ oxidoreductases. Data Brief. 2019 Dec 20;28:105038. doi: 10.1016/j.dib.2019.105038. PMID: 31938718; PMCID: PMC6953530.

18: Morales-Luna L, González-Valdez A, Sixto-López Y, Correa-Basurto J, Hernández-Ochoa B, Cárdenas-Rodríguez N, Castillo-Rodríguez RA, Ortega-Cuellar D, Arreguin-Espinosa R, Pérez de la Cruz V, Serrano-Posada H, Centeno-Leija S, Rocha-Ramírez LM, Sierra-Palacios E, Montiel-González AM, Rufino-González Y, Marcial-Quino J, Gómez-Manzo S. Identification of the NADP+ Structural Binding Site and Coenzyme Effect on the Fused G6PD::6PGL Protein from Giardia lamblia. Biomolecules. 2019 Dec 27;10(1):46. doi: 10.3390/biom10010046. PMID: 31892224; PMCID: PMC7022596.

19: Seo D, Muraki N, Kurisu G. Kinetic and structural insight into a role of the re-face Tyr328 residue of the homodimer type ferredoxin-NADP+ oxidoreductase from Rhodopseudomonas palustris in the reaction with NADP+/NADPH. Biochim Biophys Acta Bioenerg. 2020 Mar 1;1861(3):148140. doi: 10.1016/j.bbabio.2019.148140. Epub 2019 Dec 12. PMID: 31838096.

20: Yadav S, Mody TA, Sharma A, Bachhawat AK. A Genetic Screen To Identify Genes Influencing the Secondary Redox Couple NADPH/NADP+ in the Yeast Saccharomyces cerevisiae. G3 (Bethesda). 2020 Jan 7;10(1):371-378. doi: 10.1534/g3.119.400606. PMID: 31757928; PMCID: PMC6945034.