Telacebec free base
new
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 555932

CAS#: 1334719-95-7 (free base)

Description: Telacebec, also known as Q-203, is an antituberculosis agent and a potent inhibitor of mycobacterium tuberculosis protein potentially for the treatment of tuberculosis. Telacebec targets Mycobacterium tuberculosis cellular energy production through inhibition of the mycobacterial cytochrome bc1 complex. Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing.


Chemical Structure

img
Telacebec free base
CAS# 1334719-95-7 (free base)

Theoretical Analysis

MedKoo Cat#: 555932
Name: Telacebec free base
CAS#: 1334719-95-7 (free base)
Chemical Formula: C29H28ClF3N4O2
Exact Mass: 556.1853
Molecular Weight: 557.0142
Elemental Analysis: C, 62.53; H, 5.07; Cl, 6.36; F, 10.23; N, 10.06; O, 5.74

Price and Availability

Size Price Availability Quantity
50.0mg USD 750.0 2 Weeks
100.0mg USD 1250.0 2 Weeks
200.0mg USD 1950.0 2 Weeks
500.0mg USD 2950.0 2 Weeks
1.0g USD 3850.0 2 Weeks
2.0g USD 6450.0 2 Weeks
Bulk inquiry

Related CAS #: 1334719-95-7 (free base)   1566517-83-6 (Ditosylate)    

Synonym: Telacebec free base; Q-203 free base; Q 203; Q203;

IUPAC/Chemical Name: 6-chloro-2-ethyl-N-(4-(4-(4-(trifluoromethoxy)phenyl)piperidin-1-yl)benzyl)imidazo[1,2-a]pyridine-3-carboxamide

InChi Key: OJICYBSWSZGRFB-UHFFFAOYSA-N

InChi Code: InChI=1S/C29H28ClF3N4O2/c1-2-25-27(37-18-22(30)7-12-26(37)35-25)28(38)34-17-19-3-8-23(9-4-19)36-15-13-21(14-16-36)20-5-10-24(11-6-20)39-29(31,32)33/h3-12,18,21H,2,13-17H2,1H3,(H,34,38)

SMILES Code: O=C(C1=C(CC)N=C2C=CC(Cl)=CN21)NCC3=CC=C(N4CCC(C5=CC=C(OC(F)(F)F)C=C5)CC4)C=C3

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 557.0142 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Hards K, Cheung CY, Waller N, Adolph C, Keighley L, Tee ZS, Harold LK, Menorca A, Bujaroski RS, Buckley BJ, Tyndall JDA, McNeil MB, Rhee KY, Opel- Reading HK, Krause K, Preiss L, Langer JD, Meier T, Hasenoehrl EJ, Berney M, Kelso MJ, Cook GM. An amiloride derivative is active against the F1Fo-ATP synthase and cytochrome bd oxidase of Mycobacterium tuberculosis. Commun Biol. 2022 Feb 24;5(1):166. doi: 10.1038/s42003-022-03110-8. PMID: 35210534.

2: Lahiri R, Adams LB, Thomas SS, Pethe K. Sensitivity of Mycobacterium leprae to Telacebec. Emerg Infect Dis. 2022 Mar;28(3):749-751. doi: 10.3201/eid2803.210394. PMID: 35202539; PMCID: PMC8888226.

3: Malík I, Čižmárik J, Kováč G, Pecháčová M, Hudecova L. Telacebec (Q203): Is there a novel effective and safe anti-tuberculosis drug on the horizon? Ceska Slov Farm. 2021 Winter;70(5):164-171. English. doi: 10.5817/CSF2021-5-164. PMID: 35114793.

4: Gardini G, Gregori N, Matteelli A, Castelli F. Mycobacterial skin infection. Curr Opin Infect Dis. 2022 Apr 1;35(2):79-87. doi: 10.1097/QCO.0000000000000820. PMID: 35067521; PMCID: PMC8900879.

5: Lee BS, Pethe K. Telacebec: an investigational antibacterial for the treatment of tuberculosis (TB). Expert Opin Investig Drugs. 2022 Feb;31(2):139-144. doi: 10.1080/13543784.2022.2030309. Epub 2022 Jan 26. PMID: 35034512.

6: Tembe N, Machaba KE, Ndagi U, Kumalo HM, Mhlongo NN. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase-a molecular modelling perspective. J Mol Model. 2022 Jan 13;28(2):35. doi: 10.1007/s00894-021-04993-w. PMID: 35022913.

7: Malík I, Čižmárik J, Kováč G, Pecháčová M, Hudecova L. Telacebec (Q203): Is there a novel effective and safe anti-tuberculosis drug on the horizon? Ceska Slov Farm. 2021 Fall;70(5):164–171. English. doi: 10.5817/CSF2021-5-164. PMID: 34875838.

8: Zhou S, Wang W, Zhou X, Zhang Y, Lai Y, Tang Y, Xu J, Li D, Lin J, Yang X, Ran T, Chen H, Guddat LW, Wang Q, Gao Y, Rao Z, Gong H. Structure of Mycobacterium tuberculosis cytochrome bcc in complex with Q203 and TB47, two anti-TB drug candidates. Elife. 2021 Nov 25;10:e69418. doi: 10.7554/eLife.69418. PMID: 34819223; PMCID: PMC8616580.

9: Wani MA, Dhaked DK. Targeting the cytochrome bc1 complex for drug development in M. tuberculosis: review. Mol Divers. 2021 Nov 11. doi: 10.1007/s11030-021-10335-y. Epub ahead of print. PMID: 34762234.

10: Kim J, Choi J, Kang H, Ahn J, Hutchings J, van Niekerk C, Park D, Kim J, Jeon Y, Nam K, Shin S, Shin BS. Safety, Tolerability, and Pharmacokinetics of Telacebec (Q203), a New Antituberculosis Agent, in Healthy Subjects. Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0143621. doi: 10.1128/AAC.01436-21. Epub 2021 Oct 25. PMID: 34694872; PMCID: PMC8765288.

11: Thomas SS, Pethe K. Determination of Bioenergetic Parameters in Mycobacterium ulcerans. Methods Mol Biol. 2022;2387:219-230. doi: 10.1007/978-1-0716-1779-3_21. PMID: 34643916.

12: Yanofsky DJ, Di Trani JM, Król S, Abdelaziz R, Bueler SA, Imming P, Brzezinski P, Rubinstein JL. Structure of mycobacterial CIII2CIV2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). Elife. 2021 Sep 30;10:e71959. doi: 10.7554/eLife.71959. PMID: 34590581; PMCID: PMC8523172.

13: Sorayah R, Moraski GC, Barkan D, Pethe K. The QcrB Inhibitors TB47 and Telacebec Do Not Potentiate the Activity of Clofazimine in Mycobacterium abscessus. Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0096421. doi: 10.1128/AAC.00964-21. Epub 2021 Sep 20. PMID: 34543090; PMCID: PMC8597762.

14: Gupta S, Fatima Z, Kumawat S. Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net. Biosystems. 2021 Nov;209:104509. doi: 10.1016/j.biosystems.2021.104509. Epub 2021 Aug 27. PMID: 34461147.

15: Komm O, Almeida DV, Converse PJ, Omansen TF, Nuermberger EL. Impact of Dose, Duration, and Immune Status on Efficacy of Ultrashort Telacebec Regimens in Mouse Models of Buruli Ulcer. Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0141821. doi: 10.1128/AAC.01418-21. Epub 2021 Aug 30. PMID: 34460302; PMCID: PMC8522762.

16: Cai Y, Jaecklein E, Mackenzie JS, Papavinasasundaram K, Olive AJ, Chen X, Steyn AJC, Sassetti CM. Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase. PLoS Pathog. 2021 Jul 28;17(7):e1008911. doi: 10.1371/journal.ppat.1008911. PMID: 34320028; PMCID: PMC8351954.

17: Hopfner SM, Lee BS, Kalia NP, Miller MJ, Pethe K, Moraski GC. Structure guided generation of thieno[3,2-d]pyrimidin-4-amine Mycobacterium tuberculosis bd oxidase inhibitors. RSC Med Chem. 2021 Jan 12;12(1):73-77. doi: 10.1039/d0md00398k. PMID: 34046599; PMCID: PMC8130631.

18: Wang J, Jing W, Shi J, Huo F, Shang Y, Wang F, Chu N, Pang Y. Bipolar Distribution of Minimum Inhibitory Concentration of Q203 Across Mycobacterial Species. Microb Drug Resist. 2021 Aug;27(8):1013-1017. doi: 10.1089/mdr.2020.0239. Epub 2021 Feb 26. PMID: 33646044.

19: Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol. 2021 Jan 11;10:611683. doi: 10.3389/fcimb.2020.611683. PMID: 33505923; PMCID: PMC7831573.

20: Urban M, Šlachtová V, Brulíková L. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis. Eur J Med Chem. 2021 Feb 15;212:113139. doi: 10.1016/j.ejmech.2020.113139. Epub 2020 Dec 29. PMID: 33422979.