3-MCA
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 463950

CAS#: 56-49-5

Description: 3-Methylcholanthrene (3-MCA) is a known carcinogen which builds up in the prostate due to cholesterol breakdown. It is implicated in prostate cancer, and it readily produces primary sarcomas in mice.


Chemical Structure

img
3-MCA
CAS# 56-49-5

Theoretical Analysis

MedKoo Cat#: 463950
Name: 3-MCA
CAS#: 56-49-5
Chemical Formula: C21H16
Exact Mass: 268.13
Molecular Weight: 268.359
Elemental Analysis: C, 93.99; H, 6.01

Price and Availability

Size Price Availability Quantity
100mg USD 650 2 Weeks
250mg USD 1650 2 Weeks
Bulk inquiry

Synonym: 3-MCA; 3 MCA; 3MCA; 3-Methylcholanthrene; 3 Methylcholanthrene; Methylcholanthrene; NSC 21970; NSC21970; NSC-21970;

IUPAC/Chemical Name: 3-methyl-1,2-dihydrocyclopenta[ij]tetraphene

InChi Key: PPQNQXQZIWHJRB-UHFFFAOYSA-N

InChi Code: InChI=1S/C21H16/c1-13-6-7-15-12-20-17-5-3-2-4-14(17)8-9-18(20)19-11-10-16(13)21(15)19/h2-9,12H,10-11H2,1H3

SMILES Code: Cc1c2c3c(CC2)c4ccc(cccc5)c5c4cc3cc1

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 268.36 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1. Jukić T, Jurin Martić A, Ivanković S, Antica M, Pavan Jukić D, Rotim C, Jurin M. The role of regulatory T lymphocytes in immune control of MC-2 fibrosarcoma. Acta Clin Croat. 2020 Jun;59(2):351-358. doi: 10.20471/acc.2020.59.02.20. PMID: 33456124; PMCID: PMC7808230.

2. Yamashita N, Kanno Y, Yoshikawa M, Ozawa M, Sanada N, Nemoto K, Kizu R. Polycyclic aromatic hydrocarbons induce CYP3A5 gene expression via aryl hydrocarbon receptor in HepG2 cells. J Toxicol Sci. 2021;46(1):25-29. doi: 10.2131/jts.46.25. PMID: 33408298.

3. Pascual-Serra R, Fernández-Aroca DM, Sabater S, Roche O, Andrés I, Ortega-Muelas M, Arconada-Luque E, Garcia-Flores N, Bossi G, Belandia B, Ruiz-Hidalgo MJ, Sánchez-Prieto R. p38β (MAPK11) mediates gemcitabine-associated radiosensitivity in sarcoma experimental models. Radiother Oncol. 2020 Dec 11;156:136-144. doi: 10.1016/j.radonc.2020.12.008. Epub ahead of print. PMID: 33310004.

4. Chen HQ, Chen DJ, Li Y, Yuan WB, Fan J, Zhang Z, Han F, Jiang X, Chen JP, Wang DD, Cao J, Liu JY, Liu WB. Epigenetic silencing of TET1 mediated hydroxymethylation of base excision repair pathway during lung carcinogenesis. Environ Pollut. 2021 Jan 1;268(Pt B):115860. doi: 10.1016/j.envpol.2020.115860. Epub 2020 Oct 15. PMID: 33120142.

5. Miyajima A, Kuroda Y, Sakemi-Hoshikawa K, Usami M, Mitsunaga K, Irie T, Ohno Y, Sunouchi M. Inhibitory and inductive effects of 4- or 5-methyl-2-mercaptobenzimidazole, thyrotoxic and hepatotoxic rubber antioxidants, on several forms of cytochrome P450 in primary cultured rat and human hepatocytes. Toxicol Rep. 2020 Aug 12;7:979-985. doi: 10.1016/j.toxrep.2020.08.003. PMID: 32874920; PMCID: PMC7451710.

6. Gastelum G, Jiang W, Wang L, Zhou G, Borkar R, Putluri N, Moorthy B. Polycyclic Aromatic Hydrocarbon-induced Pulmonary Carcinogenesis in Cytochrome P450 (CYP)1A1- and 1A2-Null Mice: Roles of CYP1A1 and CYP1A2. Toxicol Sci. 2020 Oct 1;177(2):347-361. doi: 10.1093/toxsci/kfaa107. PMID: 32726451; PMCID: PMC7818899.

7. Chang CC, Huang KH, Hsu SP, Lee YG, Sue YM, Juan SH. Author Correction: Simvastatin reduces the carcinogenic effect of 3-methylcholanthrene in renal epithelial cells through histone deacetylase 1 inhibition and RhoA reactivation. Sci Rep. 2020 Jul 22;10(1):12526. doi: 10.1038/s41598-020-69592-w. Erratum for: Sci Rep. 2019 Mar 14;9(1):4606. PMID: 32694763; PMCID: PMC7374539.

8. Sanada N, Gotoh-Kinoshita Y, Yamashita N, Kizu R. An androgen-independent mechanism underlying the androgenic effects of 3-methylcholanthrene, a potent aryl hydrocarbon receptor agonist. Toxicol Res (Camb). 2020 May 14;9(3):271-282. doi: 10.1093/toxres/tfaa027. PMID: 32670558; PMCID: PMC7329177.

9. Ide H, Inoue S, Mizushima T, Jiang G, Nagata Y, Goto T, Kashiwagi E, Miyamoto H. Compound A inhibits urothelial tumorigenesis via both the androgen receptor and glucocorticoid receptor signaling pathways. Am J Transl Res. 2020 May 15;12(5):1779-1788. PMID: 32509176; PMCID: PMC7270017.

10. Devrim T, Ekici H, Devrim AK, Sozmen M, Senol A, Bozkur KK, Duru O, Yalcin S. Late effects of cutaneous 3-methylcholanthrene exposure on DNA damage-related pleiotropic growth factors and oxidative stress markers in mice. Bratisl Lek Listy. 2020;121(5):325-330. PMID: 32356428.

11. Miao W, Fu Z, Jin Y. 3-Methylcholanthrene alters the hepatic immune response in mice. Acta Biochim Biophys Sin (Shanghai). 2020 May 26;52(5):570-572. doi: 10.1093/abbs/gmaa020. PMID: 32293687.

12. Hong W, Guo F, Yang M, Xu D, Zhuang Z, Niu B, Bai Q, Li X. Hydroxysteroid sulfotransferase 2B1 affects gastric epithelial function and carcinogenesis induced by a carcinogenic agent. Lipids Health Dis. 2019 Nov 22;18(1):203. doi: 10.1186/s12944-019-1149-6. PMID: 31757214; PMCID: PMC6874824.

13. Rhon Calderón EA, Galarza RA, Faletti AG. 3-Methylcholanthrene impacts on the female germ cells of rats without causing systemic toxicity. Toxicology. 2020 Jan 15;429:152328. doi: 10.1016/j.tox.2019.152328. Epub 2019 Nov 9. PMID: 31712135.

14. Chen IH, Luo HL, Su YL, Huang CC, Chiang PH, Yu CC, Lee NL, Lin JJ, Sung MT. Aristolochic Acid Affects Upper Tract Urothelial Cancer Behavior through the MAPK Pathway. Molecules. 2019 Oct 15;24(20):3707. doi: 10.3390/molecules24203707. PMID: 31619002; PMCID: PMC6832650.

15. Ide H, Inoue S, Mizushima T, Kashiwagi E, Zheng Y, Miyamoto H. Role of glucocorticoid signaling in urothelial tumorigenesis: Inhibition by prednisone presumably through inducing glucocorticoid receptor transrepression. Mol Carcinog. 2019 Dec;58(12):2297-2305. doi: 10.1002/mc.23118. Epub 2019 Sep 18. PMID: 31535408.