Zeaxanthin Dipalmitate
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 463370

CAS#: 144-67-2

Description: Zeaxanthin dipalmitate is a carotenoid that has been found in F. lycii and has hepatoprotective activity. It inhibits TGF-β-induced activation of hepatic stellate cells. Zeaxanthin reduces hepatic collagen deposition and levels of thiobarbituric acid reactive substances (TBARS), as well as the activity of serum aspartate aminotransferase (AST) and alkaline phosphatase (ALP), in a rat model of hepatic fibrosis induced by bile duct ligation. It also decreases reactivated levels of hepatitis B virus (HBV) DNA and reduces hepatic steatosis, inflammation, and fibrosis in a model of non-alcoholic steatohepatitis (NASH) induced by a methionine- and choline-deficient diet in HBV transgenic mice.


Chemical Structure

img
Zeaxanthin Dipalmitate
CAS# 144-67-2

Theoretical Analysis

MedKoo Cat#: 463370
Name: Zeaxanthin Dipalmitate
CAS#: 144-67-2
Chemical Formula: C72H116O4
Exact Mass: 1044.8874
Molecular Weight: 1045.716
Elemental Analysis: C, 82.70; H, 11.18; O, 6.12

Price and Availability

Size Price Availability Quantity
1.0mg USD 240.0 2 Weeks
5.0mg USD 560.0 2 Weeks
10.0mg USD 920.0 2 Weeks
Bulk inquiry

Synonym: Zeaxanthin Dipalmitate; Zeaxanthin-Dipalmitate; Physalien;

IUPAC/Chemical Name: (1R,1'R)-((1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaene-1,18-diyl)bis(3,5,5-trimethylcyclohex-3-ene-4,1-diyl) dipalmitate

InChi Key: XACHQDDXHDTRLX-XLVVAOPESA-N

InChi Code: InChI=1S/C72H116O4/c1-13-15-17-19-21-23-25-27-29-31-33-35-37-49-69(73)75-65-55-63(7)67(71(9,10)57-65)53-51-61(5)47-41-45-59(3)43-39-40-44-60(4)46-42-48-62(6)52-54-68-64(8)56-66(58-72(68,11)12)76-70(74)50-38-36-34-32-30-28-26-24-22-20-18-16-14-2/h39-48,51-54,65-66H,13-38,49-50,55-58H2,1-12H3/b40-39+,45-41+,46-42+,53-51+,54-52+,59-43+,60-44+,61-47+,62-48+/t65-,66-/m1/s1

SMILES Code: CC1(C(/C=C/C(C)=C/C=C/C(C)=C/C=C/C=C(/C=C/C=C(/C=C/C2=C(C[C@H](CC2(C)C)OC(CCCCCCCCCCCCCCC)=O)C)C)C)=C(C[C@H](C1)OC(CCCCCCCCCCCCCCC)=O)C)C

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 1045.716 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Luo Y, Liu Y, Guo H, Fu H. Evaluation of the bioaccessibility of carotenoid esters from Lycium barbarum L. in nano-emulsions: A kinetic approach. Food Res Int. 2020 Oct;136:109611. doi: 10.1016/j.foodres.2020.109611. Epub 2020 Aug 1. PMID: 32846631.

2: Gong Y, Huang XY, Liu JF, Pei D, Duan WD, Zhang X, Sun X, Di DL. Effective on-line high-speed shear dispersing emulsifier technique coupled with high- performance countercurrent chromatography method for simultaneous extraction and isolation of carotenoids from Lycium barbarum L. fruits. J Sep Sci. 2020 May 8. doi: 10.1002/jssc.202000215. Epub ahead of print. PMID: 32384220.

3: Tudor C, Bohn T, Iddir M, Dulf FV, Focşan M, Rugină DO, Pintea A. Sea Buckthorn Oil as a Valuable Source of Bioaccessible Xanthophylls. Nutrients. 2019 Dec 27;12(1):76. doi: 10.3390/nu12010076. PMID: 31892138; PMCID: PMC7020026.

4: Kan X, Yan Y, Ran L, Lu L, Mi J, Zhang Z, Li X, Zeng X, Cao Y. Ultrasonic- assisted extraction and high-speed counter-current chromatography purification of zeaxanthin dipalmitate from the fruits of Lycium barbarum L. Food Chem. 2020 Apr 25;310:125854. doi: 10.1016/j.foodchem.2019.125854. Epub 2019 Nov 8. PMID: 31784067.

5: Bahaji Azami NL, Sun M. Zeaxanthin Dipalmitate in the Treatment of Liver Disease. Evid Based Complement Alternat Med. 2019 Aug 21;2019:1475163. doi: 10.1155/2019/1475163. PMID: 31531108; PMCID: PMC6721266.

6: Lu Y, Guo S, Zhang F, Yan H, Qian DW, Wang HQ, Jin L, Duan JA. Comparison of Functional Components and Antioxidant Activity of Lycium barbarum L. Fruits from Different Regions in China. Molecules. 2019 Jun 14;24(12):2228. doi: 10.3390/molecules24122228. PMID: 31207958; PMCID: PMC6632000.

7: Long JT, Fan HX, Zhou ZQ, Sun WY, Li QW, Wang Y, Ma M, Gao H, Zhi H. The major zeaxanthin dipalmitate derivatives from wolfberry. J Asian Nat Prod Res. 2020 Aug;22(8):746-753. doi: 10.1080/10286020.2019.1621855. Epub 2019 Jun 5. PMID: 31163996.

8: Montesano D, Rocchetti G, Cossignani L, Senizza B, Pollini L, Lucini L, Blasi F. Untargeted Metabolomics to Evaluate the Stability of Extra-Virgin Olive Oil with Added Lycium barbarum Carotenoids during Storage. Foods. 2019 May 28;8(6):179. doi: 10.3390/foods8060179. PMID: 31141920; PMCID: PMC6616970.

9: Gao H, Lv Y, Liu Y, Li J, Wang X, Zhou Z, Tipoe GL, Ouyang S, Guo Y, Zhang J, Hao X, Li W, Koike K, So KF, Xiao J. Wolfberry-Derived Zeaxanthin Dipalmitate Attenuates Ethanol-Induced Hepatic Damage. Mol Nutr Food Res. 2019 Jun;63(11):e1801339. doi: 10.1002/mnfr.201801339. Epub 2019 Apr 10. PMID: 30938072.

10: Patsilinakos A, Ragno R, Carradori S, Petralito S, Cesa S. Carotenoid content of Goji berries: CIELAB, HPLC-DAD analyses and quantitative correlation. Food Chem. 2018 Dec 1;268:49-56. doi: 10.1016/j.foodchem.2018.06.013. Epub 2018 Jun 15. PMID: 30064788.

11: Wen X, Hempel J, Schweiggert RM, Wang Y, Ni Y, Carle R. Screening of critical factors influencing the efficient hydrolysis of zeaxanthin dipalmitate in an adapted in vitro- digestion model. Food Chem. 2018 Aug 15;257:36-43. doi: 10.1016/j.foodchem.2018.02.116. Epub 2018 Feb 22. PMID: 29622222.

12: Hempel J, Fischer A, Fischer M, Högel J, Bosy-Westphal A, Carle R, Schweiggert RM. Effect of aggregation form on bioavailability of zeaxanthin in humans: a randomised cross-over study. Br J Nutr. 2017 Nov;118(9):698-706. doi: 10.1017/S0007114517002653. PMID: 29185931.

13: Yao R, Heinrich M, Weckerle CS. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. J Ethnopharmacol. 2018 Feb 15;212:50-66. doi: 10.1016/j.jep.2017.10.010. Epub 2017 Oct 16. PMID: 29042287.

14: Li JJ, Gao H, Lv Y, Li MH, Ren CR, So KF, Xiao J. Zeaxanthin dipalmitate alleviates hepatic injury induced by superimposed chronic hepatitis B and non- alcoholic steatohepatitis in non-obese mice. J Asian Nat Prod Res. 2017 Sep;19(9):910-923. doi: 10.1080/10286020.2017.1349759. PMID: 28816082.

15: Kosińska-Cagnazzo A, Bocquel D, Marmillod I, Andlauer W. Stability of goji bioactives during extrusion cooking process. Food Chem. 2017 Sep 1;230:250-256. doi: 10.1016/j.foodchem.2017.03.035. Epub 2017 Mar 9. PMID: 28407908.

16: Liu Y, Xiong Y, Xing F, Gao H, Wang X, He L, Ren C, Liu L, So KF, Xiao J. Precise Regulation of miR-210 Is Critical for the Cellular Homeostasis Maintenance and Transplantation Efficacy Enhancement of Mesenchymal Stem Cells in Acute Liver Failure Therapy. Cell Transplant. 2017 May 9;26(5):805-820. doi: 10.3727/096368916X694274. Epub 2016 Dec 13. PMID: 27983913; PMCID: PMC5657719.

17: Hempel J, Schädle CN, Sprenger J, Heller A, Carle R, Schweiggert RM. Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chem. 2017 Mar 1;218:525-533. doi: 10.1016/j.foodchem.2016.09.065. Epub 2016 Sep 10. PMID: 27719945.

18: Karioti A, Bergonzi MC, Vincieri FF, Bilia AR. Validated method for the analysis of goji berry, a rich source of zeaxanthin dipalmitate. J Agric Food Chem. 2014 Dec 31;62(52):12529-35. doi: 10.1021/jf503769s. Epub 2014 Dec 19. PMID: 25496337.

19: Zheng X, Zhu F, Wu M, Yan X, Meng X, Song Y. A rapid and effective approach for on-site assessment of total carotenoid content in wolfberry juice during processing. J Sci Food Agric. 2015 Nov;95(14):2951-5. doi: 10.1002/jsfa.7038. Epub 2014 Dec 30. PMID: 25490959.

20: Xiao J, Wang J, Xing F, Han T, Jiao R, Liong EC, Fung ML, So KF, Tipoe GL. Zeaxanthin dipalmitate therapeutically improves hepatic functions in an alcoholic fatty liver disease model through modulating MAPK pathway. PLoS One. 2014 Apr 16;9(4):e95214. doi: 10.1371/journal.pone.0095214. PMID: 24740309; PMCID: PMC3989301.