LY-300168, (S)-

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 529186

CAS#: 161832-69-5

Description: LY-300168, (S)- is a bioactive chemical.


Chemical Structure

img
LY-300168, (S)-
CAS# 161832-69-5

Theoretical Analysis

MedKoo Cat#: 529186
Name: LY-300168, (S)-
CAS#: 161832-69-5
Chemical Formula: C19H20N4O3
Exact Mass: 352.15
Molecular Weight: 352.394
Elemental Analysis: C, 64.76; H, 5.72; N, 15.90; O, 13.62

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: LY-300168, (S)-

IUPAC/Chemical Name: 7H-1,3-Dioxolo(4,5-H)(2,3)benzodiazepine-7-carboxamide, 5-(4-aminophenyl)-8,9-dihydro-N,8-dimethyl-, (8S)-

InChi Key: SMGACXZFVXKEAX-NSHDSACASA-N

InChi Code: InChI=1S/C19H20N4O3/c1-11-7-13-8-16-17(26-10-25-16)9-15(13)18(22-23(11)19(24)21-2)12-3-5-14(20)6-4-12/h3-6,8-9,11H,7,10,20H2,1-2H3,(H,21,24)/t11-/m0/s1

SMILES Code: O=C(N1N=C(C2=CC=C(N)C=C2)C3=CC(OCO4)=C4C=C3C[C@@H]1C)NC

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 352.39 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Digby RJ, Bravo DS, Paulsen O, Magloire V. Distinct mechanisms of Up state maintenance in the medial entorhinal cortex and neocortex. Neuropharmacology. 2017 Feb;113(Pt A):543-555. doi: 10.1016/j.neuropharm.2016.11.009. Epub 2016 Nov 10. PubMed PMID: 27838344; PubMed Central PMCID: PMC5154331.

2: Han L, Mu S, He Z, Wang Z, Qu J, Ye W, Zhang J. CNQX facilitates inhibitory synaptic transmission in rat hypoglossal nucleus. Brain Res. 2016 Apr 15;1637:71-80. doi: 10.1016/j.brainres.2016.02.020. Epub 2016 Feb 18. PubMed PMID: 26902496.

3: Feigenspan A, Babai N. Functional properties of spontaneous excitatory currents and encoding of light/dark transitions in horizontal cells of the mouse retina. Eur J Neurosci. 2015 Nov;42(9):2615-32. doi: 10.1111/ejn.13016. Epub 2015 Jul 30. PubMed PMID: 26173960.

4: Jiang L, Kang D, Kang J. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors. Neuroscience. 2015 Jul 9;298:448-54. doi: 10.1016/j.neuroscience.2015.04.043. Epub 2015 Apr 28. PubMed PMID: 25934031.

5: Andreasen JT, Fitzpatrick CM, Larsen M, Skovgaard L, Nielsen SD, Clausen RP, Troelsen K, Pickering DS. Differential role of AMPA receptors in mouse tests of antidepressant and anxiolytic action. Brain Res. 2015 Mar 19;1601:117-26. doi: 10.1016/j.brainres.2015.01.001. Epub 2015 Jan 8. PubMed PMID: 25578259.

6: Koncz I, Szász BK, Szabó SI, Kiss JP, Mike A, Lendvai B, Sylvester Vizi E, Zelles T. The tricyclic antidepressant desipramine inhibited the neurotoxic, kainate-induced [Ca(2+)]i increases in CA1 pyramidal cells in acute hippocampal slices. Brain Res Bull. 2014 May;104:42-51. doi: 10.1016/j.brainresbull.2014.04.003. Epub 2014 Apr 15. PubMed PMID: 24742525.

7: Rodríguez-Moreno A, Sihra TS. Presynaptic kainate receptor-mediated facilitation of glutamate release involves Ca2+-calmodulin and PKA in cerebrocortical synaptosomes. FEBS Lett. 2013 Mar 18;587(6):788-92. doi: 10.1016/j.febslet.2013.01.071. Epub 2013 Feb 14. PubMed PMID: 23416300.

8: Koga K, Sim SE, Chen T, Wu LJ, Kaang BK, Zhuo M. Kainate receptor-mediated synaptic transmissions in the adult rodent insular cortex. J Neurophysiol. 2012 Oct;108(7):1988-98. doi: 10.1152/jn.00453.2012. Epub 2012 Jul 11. PubMed PMID: 22786952.

9: Palma-Cerda F, Auger C, Crawford DJ, Hodgson AC, Reynolds SJ, Cowell JK, Swift KA, Cais O, Vyklicky L, Corrie JE, Ogden D. New caged neurotransmitter analogs selective for glutamate receptor sub-types based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups. Neuropharmacology. 2012 Sep;63(4):624-34. doi: 10.1016/j.neuropharm.2012.05.010. Epub 2012 May 17. Erratum in: Neuropharmacology. 2013 Feb;65:245. PubMed PMID: 22609535.

10: Abrahamsson T, Cathala L, Matsui K, Shigemoto R, Digregorio DA. Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron. 2012 Mar 22;73(6):1159-72. doi: 10.1016/j.neuron.2012.01.027. Epub 2012 Mar 21. PubMed PMID: 22445343.

11: Sagdullaev BT, Eggers ED, Purgert R, Lukasiewicz PD. Nonlinear interactions between excitatory and inhibitory retinal synapses control visual output. J Neurosci. 2011 Oct 19;31(42):15102-12. doi: 10.1523/JNEUROSCI.1801-11.2011. PubMed PMID: 22016544; PubMed Central PMCID: PMC3222379.

12: Auger C, Ogden D. AMPA receptor activation controls type I metabotropic glutamate receptor signalling via a tyrosine kinase at parallel fibre-Purkinje cell synapses. J Physiol. 2010 Aug 15;588(Pt 16):3063-74. doi: 10.1113/jphysiol.2010.191080. Epub 2010 Jul 5. PubMed PMID: 20603338; PubMed Central PMCID: PMC2956945.

13: Sipilä ST, Huttu K, Yamada J, Afzalov R, Voipio J, Blaesse P, Kaila K. Compensatory enhancement of intrinsic spiking upon NKCC1 disruption in neonatal hippocampus. J Neurosci. 2009 May 27;29(21):6982-8. doi: 10.1523/JNEUROSCI.0443-09.2009. PubMed PMID: 19474325.

14: Rossi B, Maton G, Collin T. Calcium-permeable presynaptic AMPA receptors in cerebellar molecular layer interneurones. J Physiol. 2008 Nov 1;586(21):5129-45. doi: 10.1113/jphysiol.2008.159921. Epub 2008 Sep 4. PubMed PMID: 18772200; PubMed Central PMCID: PMC2652151.

15: Perrais D, Pinheiro PS, Jane DE, Mulle C. Antagonism of recombinant and native GluK3-containing kainate receptors. Neuropharmacology. 2009 Jan;56(1):131-40. doi: 10.1016/j.neuropharm.2008.08.002. Epub 2008 Aug 12. PubMed PMID: 18761361.

16: Cokić B, Stein V. Stargazin modulates AMPA receptor antagonism. Neuropharmacology. 2008 Jun;54(7):1062-70. doi: 10.1016/j.neuropharm.2008.02.012. Epub 2008 Mar 4. PubMed PMID: 18378265.

17: Menuz K, Stroud RM, Nicoll RA, Hays FA. TARP auxiliary subunits switch AMPA receptor antagonists into partial agonists. Science. 2007 Nov 2;318(5851):815-7. PubMed PMID: 17975069.

18: Ibarretxe G, Perrais D, Jaskolski F, Vimeney A, Mulle C. Fast regulation of axonal growth cone motility by electrical activity. J Neurosci. 2007 Jul 18;27(29):7684-95. PubMed PMID: 17634363.

19: Bespalov A, Dravolina O, Belozertseva I, Adamcio B, Zvartau E. Lowered brain stimulation reward thresholds in rats treated with a combination of caffeine and N-methyl-D-aspartate but not alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate or metabotropic glutamate receptor-5 receptor antagonists. Behav Pharmacol. 2006 Jun;17(4):295-302. PubMed PMID: 16914947.

20: Gsell W, Burke M, Wiedermann D, Bonvento G, Silva AC, Dauphin F, Bührle C, Hoehn M, Schwindt W. Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci. 2006 Aug 16;26(33):8409-16. PubMed PMID: 16914666.