JUN 43624
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 572646

CAS#: 5943-62-4

Description: JUN 43624, also known as Tetraethyl decane-1,10-diylbis(phosphonate) is a non-PEG crosslinker. This product has no formal name at the moment. For the convenience of communication, a temporary code name was therefore proposed according to MedKoo Chemical Nomenclature (see web page: https://www.medkoo.com/page/naming).


Chemical Structure

img
JUN 43624
CAS# 5943-62-4

Theoretical Analysis

MedKoo Cat#: 572646
Name: JUN 43624
CAS#: 5943-62-4
Chemical Formula: C18H40O6P2
Exact Mass: 414.23
Molecular Weight: 414.460
Elemental Analysis: C, 52.16; H, 9.73; O, 23.16; P, 14.95

Price and Availability

Size Price Availability Quantity
250mg USD 460 2 Weeks
500mg USD 850 2 Weeks
Bulk inquiry

Synonym: Tetraethyl decane-1,10-diylbis(phosphonate); JUN 43624; JUN-43624; JUN43624

IUPAC/Chemical Name: Tetraethyl decane-1,10-diylbis(phosphonate)

InChi Key: JSLDHSYSRUFYMI-UHFFFAOYSA-N

InChi Code: InChI=1S/C18H40O6P2/c1-5-21-25(19,22-6-2)17-15-13-11-9-10-12-14-16-18-26(20,23-7-3)24-8-4/h5-18H2,1-4H3

SMILES Code: O=P(CCCCCCCCCCP(OCC)(OCC)=O)(OCC)OCC

Appearance: Solid powder

Purity: >96% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 414.46 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Boni FI, Prezotti FG, Cury BS. Gellan gum microspheres crosslinked with trivalent ion: effect of polymer and crosslinker concentrations on drug release and mucoadhesive properties. Drug Dev Ind Pharm. 2016 Aug;42(8):1283-90. doi: 10.3109/03639045.2015.1125915. Epub 2016 Jan 29. PubMed PMID: 26616390.

2: Van Haute D, Longmate JM, Berlin JM. Controlled Assembly of Biocompatible Metallic Nanoaggregates Using a Small Molecule Crosslinker. Adv Mater. 2015 Sep 16;27(35):5158-64. doi: 10.1002/adma.201501602. Epub 2015 Jul 24. PubMed PMID: 26208123; PubMed Central PMCID: PMC4567412.

3: Rao Z, Sasaki M, Taguchi T. Development of amphiphilic, enzymatically-degradable PEG-peptide conjugate as cell crosslinker for spheroid formation. Colloids Surf B Biointerfaces. 2013 Jan 1;101:223-7. doi: 10.1016/j.colsurfb.2012.06.033. Epub 2012 Jul 4. PubMed PMID: 23010023.