DBCO-C6-NHS ester
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 572255

CAS#: 1384870-47-6

Description: DBCO-C6-NHS ester is an amine-reactive compound, which can be used to modify an amine-containing molecule in organic media. This reagent isn't soluble in aqueous media. The extended 6-carbon atom spacer arm improves solubility in commonly used organic solvents including dichloromethane, chloroform, THF, and ethyl acetate and it also improves derivatization efficiency and stability of conjugates.


Chemical Structure

img
DBCO-C6-NHS ester
CAS# 1384870-47-6

Theoretical Analysis

MedKoo Cat#: 572255
Name: DBCO-C6-NHS ester
CAS#: 1384870-47-6
Chemical Formula: C25H22N2O5
Exact Mass: 430.15
Molecular Weight: 430.460
Elemental Analysis: C, 69.76; H, 5.15; N, 6.51; O, 18.58

Price and Availability

Size Price Availability Quantity
100mg USD 400 2 Weeks
250mg USD 800 2 Weeks
Bulk inquiry

Synonym: DBCO-C6-NHS ester

IUPAC/Chemical Name: DBCO-C6-NHS ester

InChi Key: CATTUKBAYDNTEG-UHFFFAOYSA-N

InChi Code: InChI=1S/C25H22N2O5/c28-22(11-5-6-12-25(31)32-27-23(29)15-16-24(27)30)26-17-20-9-2-1-7-18(20)13-14-19-8-3-4-10-21(19)26/h1-4,7-10H,5-6,11-12,15-17H2

SMILES Code: O=C(CCCCC(ON1C(CCC1=O)=O)=O)N2CC3=C(C=CC=C3)C#CC4=C2C=CC=C4

Appearance: Solid powder

Purity: >95% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info: This reagent isn't soluble in aqueous media.

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 430.46 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Wang H, Tang L, Liu Y, Dobrucka IT, Dobrucki LW, Yin L, Cheng J. In Vivo Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates. Theranostics. 2016 Jun 16;6(9):1467-76. doi: 10.7150/thno.16003. eCollection 2016. PubMed PMID: 27375793; PubMed Central PMCID: PMC4924513.

2: Yoon HI, Yhee JY, Na JH, Lee S, Lee H, Kang SW, Chang H, Ryu JH, Lee S, Kwon IC, Cho YW, Kim K. Bioorthogonal Copper Free Click Chemistry for Labeling and Tracking of Chondrocytes In Vivo. Bioconjug Chem. 2016 Apr 20;27(4):927-36. doi: 10.1021/acs.bioconjchem.6b00010. Epub 2016 Mar 10. PubMed PMID: 26930274.

3: Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ, Madlansacay MR, Tran C, Uter NT, Yin G, Rivers PJ, Yam AY, Wang WD, Steiner AR, Bajad SU, Penta K, Yang W, Hallam TJ, Thanos CD, Sato AK. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem. 2014 Feb 19;25(2):351-61. doi: 10.1021/bc400490z. Epub 2014 Jan 29. PubMed PMID: 24437342.