Parkeol

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 598315

CAS#: 28032-52-2

Description: Parkeol is the triterpene precursor of saponins in sea cucmbers.


Chemical Structure

img
Parkeol
CAS# 28032-52-2

Theoretical Analysis

MedKoo Cat#: 598315
Name: Parkeol
CAS#: 28032-52-2
Chemical Formula: C30H52O
Exact Mass: 428.40
Molecular Weight: 428.740
Elemental Analysis: C, 84.04; H, 12.23; O, 3.73

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @medkoo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Parkeol;

IUPAC/Chemical Name: (3S,5R,8S,10S,13R,14S,17R)-4,4,10,13,14-pentamethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,5,6,7,8,10,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

InChi Key: XHMHQMBOUUDXGO-FXCPCPCLSA-N

InChi Code: InChI=1S/C30H52O/c1-20(2)10-9-11-21(3)22-14-18-30(8)24-12-13-25-27(4,5)26(31)16-17-28(25,6)23(24)15-19-29(22,30)7/h15,20-22,24-26,31H,9-14,16-19H2,1-8H3/t21-,22-,24-,25+,26+,28-,29-,30+/m1/s1

SMILES Code: CC1(C)[C@@H](O)CC[C@]2(C)C3=CC[C@]4(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@](C)4[C@]3([H])CC[C@@]12[H]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 428.74 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Liu YT, Hu TC, Chang CH, Shie WS, Wu TK. Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase. Org Lett. 2012 Oct 19;14(20):5222-5. doi: 10.1021/ol302341h. Epub 2012 Oct 8. PubMed PMID: 23043506.

2: Ito R, Mori K, Hashimoto I, Nakano C, Sato T, Hoshino T. Triterpene cyclases from Oryza sativa L.: cycloartenol, parkeol and achilleol B synthases. Org Lett. 2011 May 20;13(10):2678-81. doi: 10.1021/ol200777d. Epub 2011 Apr 28. PubMed PMID: 21526825.

3: Schaefer PC, de Reinach F, Ourisson G. The conversion of parkeol into its 24,25-epoxide by tissue cultures of Nicotiana tabacum. Eur J Biochem. 1970 Jun;14(2):284-8. PubMed PMID: 5506171.

4: van Tamelen EE, Anderson RJ. Biogenetic-type total synthesis. 24,25-Dihydrolanosterol, 24,25-dihydro- 13(17) -protosterol, isoeuphenol, (-)-isotirucallol, and parkeol. J Am Chem Soc. 1972 Nov 15;94(23):8225-8. PubMed PMID: 5079966.

5: Wrzeciono U, Murphy CF, Ourisson G, Corsano S, Ehrhardt JD, Lhomme MF, Teller G. [Synthesis of labeled tetracyclic triterpenes. I. Lanosterol, cycloartenol, parkeol and 31-norcycloartenol(25-14C) or (26,27-D). II. Lanosterol and cycloartenol (2-T)]. Bull Soc Chim Fr. 1970 Mar;3:966-74. French. PubMed PMID: 5435974.

6: Meyer MM, Segura MJ, Wilson WK, Matsuda SP. Oxidosqualene Cyclase Residues that Promote Formation of Cycloartenol, Lanosterol, and Parkeol We are grateful to Bridget M. Joubert for advice regarding mutagenesis. We thank Elizabeth A. Hart for an authentic parkeol standard, and for chromatographic and spectroscopic information. This research was funded by the National Institutes of Health (grant no. AI 41598) and the Robert A. Welch Foundation (grant no. C-1323). M.M.M. was an American Society of Pharmacognosy Undergraduate Fellow. M.J.R.S. was a Robert A. Welch Fellow and was supported by an NIH Biotechnology Training Grant (grant no. T32 GM08362). Angew Chem Int Ed Engl. 2000 Nov 17;39(22):4090-4092. PubMed PMID: 11093215.

7: Segura MJ, Lodeiro S, Meyer MM, Patel AJ, Matsuda SP. Directed evolution experiments reveal mutations at cycloartenol synthase residue His477 that dramatically alter catalysis. Org Lett. 2002 Dec 12;4(25):4459-62. PubMed PMID: 12465912.

8: Raederstorff D, Rohmer M. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi. Eur J Biochem. 1987 Apr 15;164(2):427-34. PubMed PMID: 3569274.

9: Tian BX, Eriksson LA. Catalytic mechanism and product specificity of oxidosqualene-lanosterol cyclase: a QM/MM study. J Phys Chem B. 2012 Nov 29;116(47):13857-62. doi: 10.1021/jp3091396. Epub 2012 Nov 16. PubMed PMID: 23130825.

10: Kerr RG, Chen Z. In vivo and in vitro biosynthesis of saponins in sea cucumbers. J Nat Prod. 1995 Feb;58(2):172-6. PubMed PMID: 7769386.

11: Takase S, Saga Y, Kurihara N, Naraki S, Kuze K, Nakata G, Araki T, Kushiro T. Control of the 1,2-rearrangement process by oxidosqualene cyclases during triterpene biosynthesis. Org Biomol Chem. 2015 Jul 14;13(26):7331-6. doi: 10.1039/c5ob00714c. Epub 2015 Jun 10. PubMed PMID: 26058429.

12: Sawai S, Akashi T, Sakurai N, Suzuki H, Shibata D, Ayabe S, Aoki T. Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. Plant Cell Physiol. 2006 May;47(5):673-7. Epub 2006 Mar 10. PubMed PMID: 16531457.

13: Rees HH, Goad LJ, Goodwin TW. Studies in phytosterol biosynthesis. Mechanism of biosynthesis of cycloartenol. Biochem J. 1968 Apr;107(3):417-26. PubMed PMID: 4297048; PubMed Central PMCID: PMC1198679.

14: Matsuda SP, Darr LB, Hart EA, Herrera JB, McCann KE, Meyer MM, Pang J, Schepmann HG. Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation. Org Lett. 2000 Jul 27;2(15):2261-3. PubMed PMID: 10930258.

15: Kimura M, Kushiro T, Shibuya M, Ebizuka Y, Abe I. Protostadienol synthase from Aspergillus fumigatus: functional conversion into lanosterol synthase. Biochem Biophys Res Commun. 2010 Jan 1;391(1):899-902. doi: 10.1016/j.bbrc.2009.11.160. Epub 2009 Nov 29. PubMed PMID: 19951700.

16: Stiti N, Triki S, Hartmann MA. Formation of triterpenoids throughout Olea europaea fruit ontogeny. Lipids. 2007 Feb;42(1):55-67. Epub 2007 Jan 12. PubMed PMID: 17393211.

17: Pearson A, Budin M, Brocks JJ. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15352-7. Epub 2003 Dec 5. Erratum in: Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3991. PubMed PMID: 14660793; PubMed Central PMCID: PMC307571.

18: Akihisa T, Kojima N, Katoh N, Ichimura Y, Suzuki H, Fukatsu M, Maranz S, Masters ET. Triterpene alcohol and fatty acid composition of shea nuts from seven African countries. J Oleo Sci. 2010;59(7):351-60. PubMed PMID: 20513968.

19: Wu TK, Liu YT, Chang CH, Yu MT, Wang HJ. Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions. J Am Chem Soc. 2006 May 17;128(19):6414-9. PubMed PMID: 16683806.

20: Wu TK, Yu MT, Liu YT, Chang CH, Wang HJ, Diau EW. Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions. Org Lett. 2006 Mar 30;8(7):1319-22. PubMed PMID: 16562881.