PUN 22787
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 571957

CAS#: 1895922-78-7

Description: PUN 22787, also known as 1,1,1-Trifluoroethyl-PEG4-aminooxy is an Aminooxy PEG Linker. Aminooxy-PEG can be used in bioconjugation. It reacts with an aldehyde to form an oxime bond. If a reductant is used, it will form a hydroxylamine linkage. This product has no formal name. For the convenience of scientific communication, we named it by combining its InChi Key (3 letters from the first letter of each section) with the last 5 digits of its CAS#, according to MedKoo Chemical Nomenclature (https://www.medkoo.com/page/naming).


Chemical Structure

img
PUN 22787
CAS# 1895922-78-7

Theoretical Analysis

MedKoo Cat#: 571957
Name: PUN 22787
CAS#: 1895922-78-7
Chemical Formula: C10H20F3NO5
Exact Mass: 291.1294
Molecular Weight: 291.27
Elemental Analysis: C, 41.24; H, 6.92; F, 19.57; N, 4.81; O, 27.46

Price and Availability

Size Price Availability Quantity
100.0mg USD 500.0 2 Weeks
250.0mg USD 770.0 2 Weeks
500.0mg USD 1210.0 2 Weeks
Bulk inquiry

Synonym: 1,1,1-Trifluoroethyl-PEG4-aminooxy; PUN 22787; PUN-22787; PUN22787

IUPAC/Chemical Name: O-(14,14,14-trifluoro-3,6,9,12-tetraoxatetradecyl)hydroxylamine

InChi Key: PQVCKGCTWRTZFK-UHFFFAOYSA-N

InChi Code: InChI=1S/C10H20F3NO5/c11-10(12,13)9-18-6-5-16-2-1-15-3-4-17-7-8-19-14/h1-9,14H2

SMILES Code: NOCCOCCOCCOCCOCC(F)(F)F

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

Preparing Stock Solutions

The following data is based on the product molecular weight 291.27 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Grover GN, Lee J, Matsumoto NM, Maynard HD. Aminooxy and Pyridyl Disulfide Telechelic Poly(Polyethylene Glycol Acrylate) by RAFT Polymerization. Macromolecules. 2012 Jun 26;45(12):4858-4965. PubMed PMID: 24648600; PubMed Central PMCID: PMC3956054.

2: Boehnke N, Cam C, Bat E, Segura T, Maynard HD. Imine Hydrogels with Tunable Degradability for Tissue Engineering. Biomacromolecules. 2015 Jul 13;16(7):2101-8. doi: 10.1021/acs.biomac.5b00519. Epub 2015 Jul 1. PubMed PMID: 26061010; PubMed Central PMCID: PMC4583069.

3: Carberry P, Carpenter AP, Kung HF. Fluoride-18 radiolabeling of peptides bearing an aminooxy functional group to a prosthetic ligand via an oxime bond. Bioorg Med Chem Lett. 2011 Dec 1;21(23):6992-5. doi: 10.1016/j.bmcl.2011.09.124. Epub 2011 Oct 5. PubMed PMID: 22024031; PubMed Central PMCID: PMC3229035.

4: Mancini RJ, Paluck SJ, Bat E, Maynard HD. Encapsulated Hydrogels by E-beam Lithography and Their Use in Enzyme Cascade Reactions. Langmuir. 2016 Apr 26;32(16):4043-51. doi: 10.1021/acs.langmuir.6b00560. Epub 2016 Apr 14. PubMed PMID: 27078573; PubMed Central PMCID: PMC4852853.

5: Jin Y, Song L, Su Y, Zhu L, Pang Y, Qiu F, Tong G, Yan D, Zhu B, Zhu X. Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules. 2011 Oct 10;12(10):3460-8. doi: 10.1021/bm200956u. Epub 2011 Sep 7. PubMed PMID: 21863891.

6: Rashidian M, Kumarapperuma SC, Gabrielse K, Fegan A, Wagner CR, Distefano MD. Simultaneous dual protein labeling using a triorthogonal reagent. J Am Chem Soc. 2013 Nov 6;135(44):16388-96. doi: 10.1021/ja403813b. Epub 2013 Oct 17. PubMed PMID: 24134212; PubMed Central PMCID: PMC3873327.

7: Hardy JG, Lin P, Schmidt CE. Biodegradable hydrogels composed of oxime crosslinked poly(ethylene glycol), hyaluronic acid and collagen: a tunable platform for soft tissue engineering. J Biomater Sci Polym Ed. 2015;26(3):143-61. doi: 10.1080/09205063.2014.975393. PubMed PMID: 25555089.

PUN 22787

100.0mg / USD 500.0