Pyriproxyfen
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 596349

CAS#: 95737-68-1

Description: Pyriproxyfen is an insect growth regulator; a juvenile hormone analog and insect growth regulator used to control insects by disrupting metamorphosis. Has been effective in controlling mosquito larvae.


Chemical Structure

img
Pyriproxyfen
CAS# 95737-68-1

Theoretical Analysis

MedKoo Cat#: 596349
Name: Pyriproxyfen
CAS#: 95737-68-1
Chemical Formula: C20H19NO3
Exact Mass: 321.14
Molecular Weight: 321.370
Elemental Analysis: C, 74.75; H, 5.96; N, 4.36; O, 14.93

Price and Availability

Size Price Availability Quantity
50mg USD 330
Bulk inquiry

Synonym: Pyriproxyfen; Sumilarv; Tiger 10EC; Knack; Pluto MC; OMS 3019; SK 591; Nylar;

IUPAC/Chemical Name: 2-((1-(4-phenoxyphenoxy)propan-2-yl)oxy)pyridine

InChi Key: NHDHVHZZCFYRSB-UHFFFAOYSA-N

InChi Code: InChI=1S/C20H19NO3/c1-16(23-20-9-5-6-14-21-20)15-22-17-10-12-19(13-11-17)24-18-7-3-2-4-8-18/h2-14,16H,15H2,1H3

SMILES Code: CC(OC1=NC=CC=C1)COC2=CC=C(OC3=CC=CC=C3)C=C2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO and ethanol

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Product Data:
Biological target: Pyriproxyfen is a pyridine insecticide that mimics juvenile growth hormone, which prevents larvae from developing into reproduction-capable adults. The LD50 of pyriproxyfen in rats is >5,000 mg/kg, >1,300 mg/cubic meter/4 hours, and >2,000 mg/kg through oral, inhalation, or percutaneous dosing, respectively. In addition, in zebrafish, even very high doses (0.1 µg/ml, compared with 0.01 µg/ml used in practice for pest control) pyriproxyfen does not induce microcephaly or other brain malformations.
In vitro activity: Pyriproxyfen boosted vesicular stomatitis virus replication, altered cell membranes, and promoted the formation of large extracellular vesicles containing both the virus and mitochondria. While its impact on cell viability varied across cell types, it increased viability in Jurkat cells but decreased it when combined with vesicular stomatitis virus, hinting at a disruption of mammalian cell lipid environments that affect viral replication. Reference: Virol J. 2020 Jul 6;17(1):93. https://pubmed.ncbi.nlm.nih.gov/32631404/
In vivo activity: In zebrafish exposed to 56.6 μg/L pyriproxyfen, thyroid hormone receptor β gene expression stayed the same, but thyroid-stimulating hormone β subunit, iodtyronin deiodinase 2, and thyroid hormone receptor α gene expression decreased significantly compared to the control group. In zebrafish exposed to higher pyriproxyfen concentrations (111.7 or 250.7 μg/L), iodtyronin deiodinase 1 gene expression significantly increased. This suggests that pyriproxyfen disrupts thyroid hormone function and hinders zebrafish growth. Reference: Comp Biochem Physiol C Toxicol Pharmacol. 2023 Jul;269:109632. https://pubmed.ncbi.nlm.nih.gov/37075951/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 64.0 199.15
Ethanol 64.0 199.15

Preparing Stock Solutions

The following data is based on the product molecular weight 321.37 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Faria Waziry PA, Raja A, Salmon C, Aldana N, Damodar S, Fukushima AR, Mayi BS. Impact of pyriproxyfen on virus behavior: implications for pesticide-induced virulence and mechanism of transmission. Virol J. 2020 Jul 6;17(1):93. doi: 10.1186/s12985-020-01378-y. PMID: 32631404; PMCID: PMC7339562. 2. Bayoumi AE, Pérez-Pertejo Y, Zidan HZ, Balaña-Fouce R, Ordóñez C, Ordóñez D. Cytotoxic effects of two antimolting insecticides in mammalian CHO-K1 cells. Ecotoxicol Environ Saf. 2003 May;55(1):19-23. doi: 10.1016/s0147-6513(02)00068-4. PMID: 12706389. 3. Horie Y, Mitsunaga K, Yap CK. Pyriproxyfen influences growth as well as thyroid hormone-related and gh/igf-1 gene expression during the early life stage of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol. 2023 Jul;269:109632. doi: 10.1016/j.cbpc.2023.109632. Epub 2023 Apr 17. PMID: 37075951. 4. Azevedo RDS, Falcão KVG, Assis CRD, Martins RMG, Araújo MC, Yogui GT, Neves JL, Seabra GM, Maia MBS, Amaral IPG, Leite ACR, Bezerra RS. Effects of pyriproxyfen on zebrafish brain mitochondria and acetylcholinesterase. Chemosphere. 2021 Jan;263:128029. doi: 10.1016/j.chemosphere.2020.128029. Epub 2020 Aug 23. PMID: 33297050.
In vitro protocol: 1. Faria Waziry PA, Raja A, Salmon C, Aldana N, Damodar S, Fukushima AR, Mayi BS. Impact of pyriproxyfen on virus behavior: implications for pesticide-induced virulence and mechanism of transmission. Virol J. 2020 Jul 6;17(1):93. doi: 10.1186/s12985-020-01378-y. PMID: 32631404; PMCID: PMC7339562. 2. Bayoumi AE, Pérez-Pertejo Y, Zidan HZ, Balaña-Fouce R, Ordóñez C, Ordóñez D. Cytotoxic effects of two antimolting insecticides in mammalian CHO-K1 cells. Ecotoxicol Environ Saf. 2003 May;55(1):19-23. doi: 10.1016/s0147-6513(02)00068-4. PMID: 12706389.
In vivo protocol: 1. Horie Y, Mitsunaga K, Yap CK. Pyriproxyfen influences growth as well as thyroid hormone-related and gh/igf-1 gene expression during the early life stage of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol. 2023 Jul;269:109632. doi: 10.1016/j.cbpc.2023.109632. Epub 2023 Apr 17. PMID: 37075951. 2. Azevedo RDS, Falcão KVG, Assis CRD, Martins RMG, Araújo MC, Yogui GT, Neves JL, Seabra GM, Maia MBS, Amaral IPG, Leite ACR, Bezerra RS. Effects of pyriproxyfen on zebrafish brain mitochondria and acetylcholinesterase. Chemosphere. 2021 Jan;263:128029. doi: 10.1016/j.chemosphere.2020.128029. Epub 2020 Aug 23. PMID: 33297050.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Feng Y, Chen J, Zhang A. Commercially Available Natural Benzyl Esters and Their Synthetic Analogs Exhibit Different Toxicities against Insect Pests. Sci Rep. 2018 May 21;8(1):7902. doi: 10.1038/s41598-018-26242-6. PubMed PMID: 29784959.

2: Francesena N, Schneider MI. Selectivity assessment of two biorational insecticides, azadirachtin and pyriproxyfen, in comparison to a neonicotinoid, acetamiprid, on pupae and adults of a Neotropical strain Eretmocerus mundus Mercet. Chemosphere. 2018 May 2;206:349-358. doi: 10.1016/j.chemosphere.2018.05.010. [Epub ahead of print] PubMed PMID: 29754059.

3: Eytcheson SA, LeBlanc GA. Hemoglobin Levels Modulate Nitrite Toxicity to Daphnia magna. Sci Rep. 2018 May 8;8(1):7172. doi: 10.1038/s41598-018-24087-7. PubMed PMID: 29739949; PubMed Central PMCID: PMC5940661.

4: Marina CF, Bond JG, Muñoz J, Valle J, Quiroz-Martínez H, Torres-Monzón JA, Williams T. Efficacy of larvicides for the control of dengue, Zika, and chikungunya vectors in an urban cemetery in southern Mexico. Parasitol Res. 2018 Jun;117(6):1941-1952. doi: 10.1007/s00436-018-5891-x. Epub 2018 Apr 30. PubMed PMID: 29713901.

5: Swale DR, Li Z, Kraft JZ, Healy K, Liu M, David CM, Liu Z, Foil LD. Development of an autodissemination strategy for the deployment of novel control agents targeting the common malaria mosquito, Anopheles quadrimaculatus say (Diptera: Culicidae). PLoS Negl Trop Dis. 2018 Apr 11;12(4):e0006259. doi: 10.1371/journal.pntd.0006259. eCollection 2018 Apr. PubMed PMID: 29641515; PubMed Central PMCID: PMC5894962.

6: Lau KW, Chen CD, Lee HL, Low VL, Sofian-Azirun M. Bioefficacy of Insect Growth Regulators Against Aedes albopictus (Diptera: Culicidea) From Sarawak, Malaysia: A Statewide Survey. J Econ Entomol. 2018 Apr 2. doi: 10.1093/jee/toy071. [Epub ahead of print] PubMed PMID: 29617840.

7: Tanaka Y, Nakamura K, Oda S, Watanabe H, Tatarazako N. Estimation of population-level effect of the endocrine disruptor pyriproxyfen in Daphnia magna by using changes in sex ratio and reproductive output. Ecotoxicol Environ Saf. 2018 Jul 30;156:463-475. doi: 10.1016/j.ecoenv.2018.03.044. PubMed PMID: 29605666.

8: Rashidi F, Nouri-Ganbalani G, Imani S. Sublethal Effects of Some Insecticides on Functional Response of Habrobracon hebetor (Hymneoptera: Braconidae) When Reared on Two Lepidopteran Hosts. J Econ Entomol. 2018 Mar 20. doi: 10.1093/jee/toy069. [Epub ahead of print] PubMed PMID: 29579285.

9: Arthur FH, Ghimire MN, Myers SW, Phillips TW. Evaluation of Pyrethroid Insecticides and Insect Growth Regulators Applied to Different Surfaces for Control of Trogoderma granarium (Coleoptera: Dermestidae) the Khapra Beetle. J Econ Entomol. 2018 Apr 2;111(2):612-619. doi: 10.1093/jee/toy040. PubMed PMID: 29514245.

10: Gouveia D, Bonneton F, Almunia C, Armengaud J, Quéau H, Degli-Esposti D, Geffard O, Chaumot A. Identification, expression, and endocrine-disruption of three ecdysone-responsive genes in the sentinel species Gammarus fossarum. Sci Rep. 2018 Feb 28;8(1):3793. doi: 10.1038/s41598-018-22235-7. PubMed PMID: 29491422; PubMed Central PMCID: PMC5830573.

11: Audouze K, Taboureau O, Grandjean P. A systems biology approach to predictive developmental neurotoxicity of a larvicide used in the prevention of Zika virus transmission. Toxicol Appl Pharmacol. 2018 Feb 21. pii: S0041-008X(18)30060-7. doi: 10.1016/j.taap.2018.02.014. [Epub ahead of print] PubMed PMID: 29476864.

12: Overgaard HJ, Pientong C, Thaewnongiew K, Bangs MJ, Ekalaksananan T, Aromseree S, Phanitchat T, Phanthanawiboon S, Fustec B, Corbel V, Cerqueira D, Alexander N. Assessing dengue transmission risk and a vector control intervention using entomological and immunological indices in Thailand: study protocol for a cluster-randomized controlled trial. Trials. 2018 Feb 20;19(1):122. doi: 10.1186/s13063-018-2490-1. PubMed PMID: 29458406; PubMed Central PMCID: PMC5819278.

13: Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K. Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study. Aquat Toxicol. 2018 Mar;196:132-145. doi: 10.1016/j.aquatox.2018.01.010. Epub 2018 Jan 12. PubMed PMID: 29407799.

14: Parens R, Nijhout HF, Morales A, Xavier Costa F, Bar-Yam Y. A Possible Link Between Pyriproxyfen and Microcephaly. PLoS Curr. 2017 Nov 27;9. pii: ecurrents.outbreaks.5afb0bfb8cf31d9a4baba7b19b4edbac. doi: 10.1371/currents.outbreaks.5afb0bfb8cf31d9a4baba7b19b4edbac. PubMed PMID: 29362686; PubMed Central PMCID: PMC5760164.

15: Fisher A 2nd, Colman C, Hoffmann C, Fritz B, Rangel J. The Effects of the Insect Growth Regulators Methoxyfenozide and Pyriproxyfen and the Acaricide Bifenazate on Honey Bee (Hymenoptera: Apidae) Forager Survival. J Econ Entomol. 2018 Apr 2;111(2):510-516. doi: 10.1093/jee/tox347. PubMed PMID: 29361013.

16: Du P, Wu X, Xu J, Dong F, Shi Y, Li Y, Liu X, Zheng Y. Different residue behaviors of four pesticides in mushroom using two different application methods. Environ Sci Pollut Res Int. 2018 Mar;25(9):8377-8387. doi: 10.1007/s11356-017-1142-4. Epub 2018 Jan 6. PubMed PMID: 29307062.

17: Oo SZM, Thaung S, Maung YNM, Aye KM, Aung ZZ, Thu HM, Thant KZ, Minakawa N. Effectiveness of a novel long-lasting pyriproxyfen larvicide (SumiLarv®2MR) against Aedes mosquitoes in schools in Yangon, Myanmar. Parasit Vectors. 2018 Jan 6;11(1):16. doi: 10.1186/s13071-017-2603-9. PubMed PMID: 29306333; PubMed Central PMCID: PMC5756364.

18: Watanabe H, Oda S, Abe R, Tanaka Y, Tatarazako N. Comparison of the effects of constant and pulsed exposure with equivalent time-weighted average concentrations of the juvenile hormone analog pyriproxyfen on the reproduction of Daphnia magna. Chemosphere. 2018 Mar;195:810-816. doi: 10.1016/j.chemosphere.2017.12.124. Epub 2017 Dec 22. PubMed PMID: 29289908.

19: Su T, Thieme J, Ocegueda C, Ball M, Cheng ML. Resistance to Lysinibacillus sphaericus and Other Commonly Used Pesticides in Culex pipiens (Diptera: Culicidae) from Chico, California. J Med Entomol. 2018 Feb 28;55(2):423-428. doi: 10.1093/jme/tjx235. PubMed PMID: 29272497.

20: Unlu I, Williams GM, Rochlin I, Suman D, Wang Y, Chandel K, Gaugler R. Evaluation of Lambda-Cyhalothrin and Pyriproxyfen Barrier Treatments for Aedes albopictus (Diptera: Culicidae) Management in Urbanized Areas of New Jersey. J Med Entomol. 2018 Feb 28;55(2):472-476. doi: 10.1093/jme/tjx216. PubMed PMID: 29244157.