Vacuolin-1
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 562795

CAS#: 351986-85-1

Description: Vacuolin-1 is a cell-permeable inhibitor of Ca2+ dependent fusion of lysosomes to the cell membrane. It acts by inhibiting release of lysosomal content.


Price and Availability

Size
Price

5mg
USD 260
Size
Price

10mg
USD 420
Size
Price

Vacuolin-1, purity > 98%, is in stock. Current shipping out time is about 2 weeks after order is received. CoA, QC data and MSDS documents are available in one week after order is received.


Chemical Structure

img

Theoretical Analysis

MedKoo Cat#: 562795
Name: Vacuolin-1
CAS#: 351986-85-1
Chemical Formula: C26H24IN7O
Exact Mass: 577.1087
Molecular Weight: 577.43
Elemental Analysis: C, 54.08; H, 4.19; I, 21.98; N, 16.98; O, 2.77


Synonym: Vacuolin-1; Vacuolin 1; Vacuolin1;

IUPAC/Chemical Name: 3-Iodobenzaldehyde [4-(diphenylamino)-6-(4-morpholinyl)-1,3,5-triazin-2-yl]hydrazone

InChi Key: JMEJTSRAQUFNOP-TURZUDJPSA-N

InChi Code: InChI=1S/C26H24IN7O/c27-21-9-7-8-20(18-21)19-28-32-24-29-25(33-14-16-35-17-15-33)31-26(30-24)34(22-10-3-1-4-11-22)23-12-5-2-6-13-23/h1-13,18-19H,14-17H2,(H,29,30,31,32)/b28-19+

SMILES Code: IC1=CC(/C=N/NC2=NC(N(C3=CC=CC=C3)C4=CC=CC=C4)=NC(N5CCOCC5)=N2)=CC=C1


Technical Data

Appearance:
Solid powder

Purity:
>98% (or refer to the Certificate of Analysis)

Shipping Condition:
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition:
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility:
Soluble in DMSO

Shelf Life:
>2 years if stored properly

Drug Formulation:
This drug may be formulated in DMSO

Stock Solution Storage:
0 - 4 C for short term (days to weeks), or -20 C for long term (months).

Harmonized System Code:
293490


References

1: Vacuolin-1 potently and reversibly inhibits autophagy by activating Rab5. Autophagy. 2018;14(1):176-177. doi: 10.1080/15548627.2017.1367474. Epub 2018 Feb 1. PubMed PMID: 29388871; PubMed Central PMCID: PMC5846563.

2: Layhadi JA, Fountain SJ. P2X4 Receptor-Dependent Ca(2+) Influx in Model Human Monocytes and Macrophages. Int J Mol Sci. 2017 Oct 27;18(11). pii: E2261. doi: 10.3390/ijms18112261. PubMed PMID: 29077063; PubMed Central PMCID: PMC5713231.

3: Jiang LQ, Wang TY, Webster TJ, Duan HJ, Qiu JY, Zhao ZM, Yin XX, Zheng CL. Intracellular disposition of chitosan nanoparticles in macrophages: intracellular uptake, exocytosis, and intercellular transport. Int J Nanomedicine. 2017 Aug 31;12:6383-6398. doi: 10.2147/IJN.S142060. eCollection 2017. PubMed PMID: 28919742; PubMed Central PMCID: PMC5587219.

4: Li Z, Mbah NE, Maltese WA. Vacuole-inducing compounds that disrupt endolysosomal trafficking stimulate production of exosomes by glioblastoma cells. Mol Cell Biochem. 2018 Feb;439(1-2):1-9. doi: 10.1007/s11010-017-3130-x. Epub 2017 Aug 2. PubMed PMID: 28770472; PubMed Central PMCID: PMC5796851.

5: Chen C, Lu Y, Siu HM, Guan J, Zhu L, Zhang S, Yue J, Zhang L. Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis. Molecules. 2017 May 27;22(6). pii: E891. doi: 10.3390/molecules22060891. PubMed PMID: 28555021.

6: Cao Q, Yang Y, Zhong XZ, Dong XP. The lysosomal Ca(2+) release channel TRPML1 regulates lysosome size by activating calmodulin. J Biol Chem. 2017 May 19;292(20):8424-8435. doi: 10.1074/jbc.M116.772160. Epub 2017 Mar 30. PubMed PMID: 28360104; PubMed Central PMCID: PMC5437247.

7: Fekri F, Delos Santos RC, Karshafian R, Antonescu CN. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms. PLoS One. 2016 Jun 8;11(6):e0156754. doi: 10.1371/journal.pone.0156754. eCollection 2016. PubMed PMID: 27275866; PubMed Central PMCID: PMC4898768.

8: Sano O, Kazetani K, Funata M, Fukuda Y, Matsui J, Iwata H. Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via PIKfyve inhibition. FEBS Lett. 2016 Jun;590(11):1576-85. doi: 10.1002/1873-3468.12195. Epub 2016 May 13. PubMed PMID: 27135648.

9: Zou J, Hu B, Arpag S, Yan Q, Hamilton A, Zeng YS, Vanoye CG, Li J. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells. J Neurosci. 2015 Apr 29;35(17):6801-12. doi: 10.1523/JNEUROSCI.4442-14.2015. PubMed PMID: 25926456; PubMed Central PMCID: PMC4412898.

10: Lu Y, Dong S, Hao B, Li C, Zhu K, Guo W, Wang Q, Cheung KH, Wong CW, Wu WT, Markus H, Yue J. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy. 2014;10(11):1895-905. doi: 10.4161/auto.32200. Epub 2014 Oct 30. Erratum in: Autophagy. 2018;14 (1):176-177. PubMed PMID: 25483964; PubMed Central PMCID: PMC4502727.

11: Kypri E, Falkenstein K, De Lozanne A. Antagonistic control of lysosomal fusion by Rab14 and the Lyst-related protein LvsB. Traffic. 2013 May;14(5):599-609. doi: 10.1111/tra.12058. Epub 2013 Mar 12. PubMed PMID: 23387437; PubMed Central PMCID: PMC3622840.

12: Jung J, Shin YH, Konishi H, Lee SJ, Kiyama H. Possible ATP release through lysosomal exocytosis from primary sensory neurons. Biochem Biophys Res Commun. 2013 Jan 11;430(2):488-93. doi: 10.1016/j.bbrc.2012.12.009. Epub 2012 Dec 10. PubMed PMID: 23237805.

13: Shin YH, Lee SJ, Jung J. Secretion of ATP from Schwann cells through lysosomal exocytosis during Wallerian degeneration. Biochem Biophys Res Commun. 2012 Dec 14;429(3-4):163-7. doi: 10.1016/j.bbrc.2012.10.121. Epub 2012 Nov 7. PubMed PMID: 23142593.

14: Liu Y, Zhou Y, Zhu K. Inhibition of glioma cell lysosome exocytosis inhibits glioma invasion. PLoS One. 2012;7(9):e45910. doi: 10.1371/journal.pone.0045910. Epub 2012 Sep 28. PubMed PMID: 23029308; PubMed Central PMCID: PMC3461042.

15: Miller ME, Adhikary S, Kolokoltsov AA, Davey RA. Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol. 2012 Jul;86(14):7473-83. doi: 10.1128/JVI.00136-12. Epub 2012 May 9. PubMed PMID: 22573858; PubMed Central PMCID: PMC3416309.

16: Keerthivasan G, Liu H, Gump JM, Dowdy SF, Wickrema A, Crispino JD. A novel role for survivin in erythroblast enucleation. Haematologica. 2012 Oct;97(10):1471-9. doi: 10.3324/haematol.2011.061093. Epub 2012 Apr 4. PubMed PMID: 22491741; PubMed Central PMCID: PMC3487547.

17: Durchfort N, Verhoef S, Vaughn MB, Shrestha R, Adam D, Kaplan J, Ward DM. The enlarged lysosomes in beige j cells result from decreased lysosome fission and not increased lysosome fusion. Traffic. 2012 Jan;13(1):108-19. doi: 10.1111/j.1600-0854.2011.01300.x. Epub 2011 Nov 9. PubMed PMID: 21985295; PubMed Central PMCID: PMC3237799.

18: Keerthivasan G, Small S, Liu H, Wickrema A, Crispino JD. Vesicle trafficking plays a novel role in erythroblast enucleation. Blood. 2010 Oct 28;116(17):3331-40. doi: 10.1182/blood-2010-03-277426. Epub 2010 Jul 19. PubMed PMID: 20644112; PubMed Central PMCID: PMC2995360.

19: Bao JX, Xia M, Poklis JL, Han WQ, Brimson C, Li PL. Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. Am J Physiol Heart Circ Physiol. 2010 Mar;298(3):H992-H1002. doi: 10.1152/ajpheart.00958.2009. Epub 2010 Jan 8. PubMed PMID: 20061541; PubMed Central PMCID: PMC2838547.

20: Shaik GM, Dráberová L, Heneberg P, Dráber P. Vacuolin-1-modulated exocytosis and cell resealing in mast cells. Cell Signal. 2009 Aug;21(8):1337-45. doi: 10.1016/j.cellsig.2009.04.001. Epub 2009 Apr 17. PubMed PMID: 19376224.