Capreomycin Sulfate
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 329207

CAS#: 1405-37-4 (sulfate)

Description: Capreomycin is a polypeptide antibiotic originally isolated from S. capreolus. It is active against M. tuberculosis (MIC = 10 µg/ml). Capreomycin binds to both the 30S and 50S ribosomal subunits, inhibiting protein synthesis.


Chemical Structure

img
Capreomycin Sulfate
CAS# 1405-37-4 (sulfate)

Theoretical Analysis

MedKoo Cat#: 329207
Name: Capreomycin Sulfate
CAS#: 1405-37-4 (sulfate)
Chemical Formula: C50H92N28O23S2
Exact Mass: 0.00
Molecular Weight: 1,517.580
Elemental Analysis: C, 39.57; H, 6.11; N, 25.84; O, 24.25; S, 4.23

Price and Availability

Size Price Availability Quantity
1g USD 295
2g USD 485
5g USD 795
10g USD 1650
Bulk inquiry

Related CAS #: 11003-38-6 (free base)   1405-37-4 (sulfate)    

Synonym: Capreomycin Sulfate; Kapreomycin; Capostatin;

IUPAC/Chemical Name: sulfuric acid compound with (S)-3,6-diamino-N-(((2S,5S,11S,15S,E)-15-amino-11-((R)-2-amino-3,4,5,6-tetrahydropyrimidin-4-yl)-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-8-(ureidomethylene)-1,4,7,10,13-pentaazacyclohexadecan-5-yl)methyl)hexanamide and (S)-3,6-diamino-N-(((2S,5S,11S,15S,E)-15-amino-11-((R)-2-amino-3,4,5,6-tetrahydropyrimidin-4-yl)-2-methyl-3,6,9,12,16-pentaoxo-8-(ureidomethylene)-1,4,7,10,13-pentaazacyclohexadecan-5-yl)methyl)hexanamide (1:1:1)

InChi Key: TUATYNXRYJTQTQ-RIQUSILOSA-N

InChi Code: InChI=1S/C25H44N14O8.C25H44N14O7.2H2O4S/c26-4-1-2-11(27)6-17(41)32-8-14-20(43)35-15(9-34-25(30)47)21(44)39-18(13-3-5-31-24(29)38-13)23(46)33-7-12(28)19(42)37-16(10-40)22(45)36-14;1-11-19(41)36-15(9-32-17(40)7-12(27)3-2-5-26)21(43)37-16(10-34-25(30)46)22(44)39-18(14-4-6-31-24(29)38-14)23(45)33-8-13(28)20(42)35-11;2*1-5(2,3)4/h9,11-14,16,18,40H,1-8,10,26-28H2,(H,32,41)(H,33,46)(H,35,43)(H,36,45)(H,37,42)(H,39,44)(H3,29,31,38)(H3,30,34,47);10-15,18H,2-9,26-28H2,1H3,(H,32,40)(H,33,45)(H,35,42)(H,36,41)(H,37,43)(H,39,44)(H3,29,31,38)(H3,30,34,46);2*(H2,1,2,3,4)/b15-9+;16-10+;;/t11-,12-,13+,14-,16-,18-;11-,12-,13-,14+,15-,18-;;/m00../s1

SMILES Code: C[C@@H]1NC(=O)[C@@H](N)CNC(=O)[C@@H](NC(=O)\C(=C/NC(=O)N)\NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC1=O)[C@H]2CCN=C(N)N2.NCCC[C@H](N)CC(=O)NC[C@@H]3NC(=O)[C@H](CO)NC(=O)[C@@H](N)CNC(=O)[C@@H](NC(=O)\C(=C/NC(=O)N)\NC3=O)[C@H]4CCN=C(N)N4.OS(=O)(=O)O.OS(=O)(=O)O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info: Related CAS# 11003-38-6(Capreomycin) 1405-37-4(Capreomycin Sulfate)

Product Data:
Biological target: Capreomycin sulfate is a peptide antibiotic, commonly grouped with the aminoglycosides, which is given in combination with other antibiotics for MDR-tuberculosis.
In vitro activity: Time course of insulin fibrillation in the absence and presence of capreomycin (CN) (mixture of four isoforms) was studied by a ThT fluorescence assay and shown in Fig. 1. Initially, to monitor CN's behavior towards insulin fibril formation, different concentrations of CN (from 0 to 200 μM) were tested. Drop in ThT fluorescence was observed with increase in the concentration of CN and saturated at 100 μM of CN (Fig. 1A), indicates that CN inhibits fibril formation in a concentration dependent manner, maximum at ≈100 μM of CN. ThT fluorescence spectra of free insulin and insulin incubated with CN showed that ThT fluorescence reduced from 295 to 135 and 48 in the presence of 75 and 100 μM of CN, respectively (Supplementary Fig. S1). In other words, we can say that CN inhibits the aggregation process of insulin up to 83% as compared to the control (Supplementary Fig. S2). Even at 75 μM, CN showed the delaying effect in fibrillation process (54% effective). The IC50 value of CN was also evaluated to be 69.98 μM, from the dose response curve (Fig. 2). Furthermore, we also tested whether CN would hamper the elongation phase or not. To test this hypothesis, we added the CN (100 μM) at two different points along the aggregation pathway (Fig. 3). The addition of CN at the midpoint arrested aggregation completely, but did not decrease the ThT fluorescence significantly, suggests CN may block aggregation in log phase. Similarly, adding CN at the end of lag phase reduced the yield of fibril. Ratha et. Al. also described that novel amphipathic heptapeptide inhibits insulin fibril formation, similar to action of CN. Overall these results concluded that either the premixing of CN with insulin or the addition of CN during the growing phase retards the amyloid fibril formation. Importantly, these observed results were due to the cumulative effect of different isoform of CN viz. IA, IB, IIA and IIB, since, individually these isoforms may behave differentially. Reference: Biochim Biophys Acta Proteins Proteom. 2018 Apr;1866(4):549-557. https://linkinghub.elsevier.com/retrieve/pii/S1570-9639(18)30021-9
In vivo activity: The efficacy of the intrapulmonary aerosol delivery for capreomycin and amikacin is shown in Fig. 2. Neither capreomycin nor amikacin is orally bioavailable. Mice treated by the intrapulmonary aerosol or by subcutaneous injection of capreomycin or amikacin demonstrated similar reductions of the pulmonary bacterial load after 3 weeks of treatment. During the 3 weeks of treatment, mice treated with capreomycin or amikacin received a total of 9 doses when delivered by intrapulmonary aerosol or a total of 15 doses by subcutaneous injection. Similarly, both drugs were administered at 500 μg/dose when delivered by the intrapulmonary aerosol and at 3,300 μg/dose when delivered by subcutaneous injection. The bacterial loads of controls treated with sterile phosphate-buffered saline (PBS) (diluents for the drugs) were statistically similar to those of untreated mice (P > 0.05). The bacterial load in the spleen of mice treated by either intrapulmonary aerosol or subcutaneous injection with capreomycin or amikacin did not differ significantly from that of the control mice treated with the drug diluents (P > 0.05) (data not shown). Reference: Antimicrob Agents Chemother. 2012 Jul;56(7):3957-9. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22547626/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
Water 37.0 49.28

Preparing Stock Solutions

The following data is based on the product molecular weight 1,517.58 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol: 1. Siddiqi MK, Alam P, Chaturvedi SK, Khan MV, Nusrat S, Malik S, Khan RH. Capreomycin inhibits the initiation of amyloid fibrillation and suppresses amyloid induced cell toxicity. Biochim Biophys Acta Proteins Proteom. 2018 Apr;1866(4):549-557. doi: 10.1016/j.bbapap.2018.02.005. Epub 2018 Feb 26. Erratum in: Biochim Biophys Acta Proteins Proteom. 2020 Jun;1868(6):140407. PMID: 29496560.
In vivo protocol: 1. Gonzalez-Juarrero M, Woolhiser LK, Brooks E, DeGroote MA, Lenaerts AJ. Mouse model for efficacy testing of antituberculosis agents via intrapulmonary delivery. Antimicrob Agents Chemother. 2012 Jul;56(7):3957-9. doi: 10.1128/AAC.00464-12. Epub 2012 Apr 30. PMID: 22547626; PMCID: PMC3393411.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Pan YC, Wang YL, Toh SI, Hsu NS, Lin KH, Xu Z, Huang SC, Wu TK, Li TL, Chang CY. Dual-Mechanism Confers Self-Resistance to the Antituberculosis Antibiotic Capreomycin. ACS Chem Biol. 2022 Jan 21;17(1):138-146. doi: 10.1021/acschembio.1c00799. Epub 2022 Jan 7. PMID: 34994196.


2: Shao Z, Tai W, Qiu Y, Man RCH, Liao Q, Chow MYT, Kwok PCL, Lam JKW. Spray- Dried Powder Formulation of Capreomycin Designed for Inhaled Tuberculosis Therapy. Pharmaceutics. 2021 Nov 30;13(12):2044. doi: 10.3390/pharmaceutics13122044. PMID: 34959328; PMCID: PMC8706516.


3: Penn-Nicholson A, Georghiou SB, Ciobanu N, Kazi M, Bhalla M, David A, Conradie F, Ruhwald M, Crudu V, Rodrigues C, Myneedu VP, Scott L, Denkinger CM, Schumacher SG; Xpert XDR Trial Consortium. Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross-sectional multicentre diagnostic accuracy study. Lancet Infect Dis. 2022 Feb;22(2):242-249. doi: 10.1016/S1473-3099(21)00452-7. Epub 2021 Oct 7. PMID: 34627496.


4: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012–. Capreomycin. 2021 Sep 20. PMID: 31643953.


5: Ali W, Jamal S, Grover A, Grover S. Insights into the mutations leading to capreomycin resistance in S-adenosyl-L-methionine binding motif in TlyA from Mycobacterium tuberculosis. J Biomol Struct Dyn. 2021 Aug 31:1-9. doi: 10.1080/07391102.2021.1969284. Epub ahead of print. PMID: 34463210.


6: Hsu SH, Zhang S, Huang SC, Wu TK, Xu Z, Chang CY. Characterization of Enzymes Catalyzing the Formation of the Nonproteinogenic Amino Acid l-Dap in Capreomycin Biosynthesis. Biochemistry. 2021 Jan 12;60(1):77-84. doi: 10.1021/acs.biochem.0c00808. Epub 2020 Dec 23. PMID: 33356147.


7: Cegielski JP, Chan PC, Lan Z, Udwadia ZF, Viiklepp P, Yim JJ, Menzies D. Aminoglycosides and Capreomycin in the Treatment of Multidrug-resistant Tuberculosis: Individual Patient Data Meta-analysis of 12 030 Patients From 25 Countries, 2009-2016. Clin Infect Dis. 2021 Dec 6;73(11):e3929-e3936. doi: 10.1093/cid/ciaa621. PMID: 33124668; PMCID: PMC8653626.


8: Drugs and Lactation Database (LactMed) [Internet]. Bethesda (MD): National Library of Medicine (US); 2006–. Capreomycin. 2020 Sep 21. PMID: 30000651.


9: Siddiqi MK, Alam P, Chaturvedi SK, Khan MV, Nusrat S, Malik S, Khan RH. Corrigendum to "Capreomycin inhibits the initiation of amyloid fibrillation and suppresses amyloid induced cell toxicity" [Biochim. Biophy. Acta 1866 (2018) 549-557]. Biochim Biophys Acta Proteins Proteom. 2020 Jun;1868(6):140407. doi: 10.1016/j.bbapap.2020.140407. Epub 2020 Mar 6. Erratum for: Biochim Biophys Acta Proteins Proteom. 2018 Apr;1866(4):549-557. PMID: 32151539.


10: Puri MM, Kumar A, Aneja P, Gupta R, Kumar L, Sarin R. Tetany in an Extensively Drug Resistant Tuberculosis (XDR-TB) Patient Treated with Capreomycin. J Assoc Physicians India. 2019 Aug;67(8):79-82. PMID: 31562727.


11: Vianna JF, S Bezerra K, I N Oliveira J, Albuquerque EL, Fulco UL. Binding energies of the drugs capreomycin and streptomycin in complex with tuberculosis bacterial ribosome subunits. Phys Chem Chem Phys. 2019 Sep 21;21(35):19192-19200. doi: 10.1039/c9cp03631h. Epub 2019 Aug 22. PMID: 31436279.


12: Chowdhury AS, Khaledian E, Broschat SL. Capreomycin resistance prediction in two species of Mycobacterium using a stacked ensemble method. J Appl Microbiol. 2019 Dec;127(6):1656-1664. doi: 10.1111/jam.14413. Epub 2019 Sep 8. PMID: 31419358.


13: Zhao J, Wei W, Yan H, Zhou Y, Li Z, Chen Y, Zhang C, Zeng J, Chen T, Zhou L. Assessing capreomycin resistance on tlyA deficient and point mutation (G695A) Mycobacterium tuberculosis strains using multi-omics analysis. Int J Med Microbiol. 2019 Nov;309(7):151323. doi: 10.1016/j.ijmm.2019.06.003. Epub 2019 Jun 24. PMID: 31279617.


14: Li G, Xu Z, Jiang Y, Liu H, Zhao LL, Li M, Xu D, Zhao X, Liu Z, Wang R, Wan K. Synergistic activities of clofazimine with moxifloxacin or capreomycin against Mycobacterium tuberculosis in China. Int J Antimicrob Agents. 2019 Nov;54(5):642-646. doi: 10.1016/j.ijantimicag.2019.06.002. Epub 2019 Jun 11. PMID: 31200023.


15: Pitner RA, Durham PG, Stewart IE, Reed SG, Cassell GH, Hickey AJ, Carter D. A Spray-Dried Combination of Capreomycin and CPZEN-45 for Inhaled Tuberculosis Therapy. J Pharm Sci. 2019 Oct;108(10):3302-3311. doi: 10.1016/j.xphs.2019.05.024. Epub 2019 May 29. PMID: 31152746; PMCID: PMC6759370.


16: Soeroto AY, Darmawan G, Supriyadi R, Bhaskara PG, Santoso P, Alisjahbana B, Parwati I. Comparison of Serum Potassium, MagnEsium, and Calcium Levels between Kanamycin and Capreomycin-BASEd Regimen-Treated MultiDrug-Resistant TuBerculosis Patients in Bandung (CEASE MDR-TB): A Retrospective Cohort Study. Int J Microbiol. 2019 Mar 14;2019:5065847. doi: 10.1155/2019/5065847. PMID: 31001341; PMCID: PMC6437726.


17: Miryala SK, Anbarasu A, Ramaiah S. Impact of bedaquiline and capreomycin on the gene expression patterns of multidrug-resistant Mycobacterium tuberculosis H37Rv strain and understanding the molecular mechanism of antibiotic resistance. J Cell Biochem. 2019 Sep;120(9):14499-14509. doi: 10.1002/jcb.28711. Epub 2019 Apr 15. PMID: 30989745.


18: Liu G, Luan B, Liang G, Xing L, Huang L, Wang C, Xu Y. Isolation and identification of four major impurities in capreomycin sulfate. J Chromatogr A. 2018 Oct 12;1571:155-164. doi: 10.1016/j.chroma.2018.08.015. Epub 2018 Aug 7. PMID: 30115387.


19: Man DK, Kanno T, Manzo G, Robertson BD, Lam JKW, Mason AJ. Rifampin- or Capreomycin-Induced Remodeling of the Mycobacterium smegmatis Mycolic Acid Layer Is Mitigated in Synergistic Combinations with Cationic Antimicrobial Peptides. mSphere. 2018 Jul 18;3(4):e00218-18. doi: 10.1128/mSphere.00218-18. PMID: 30021876; PMCID: PMC6052339.


20: Thuboy B, Kellermann T, Castel S, Norman J, Joubert A, Garcia-Prats AJ, Hesseling AC, Wiesner L. The determination of capreomycin in human plasma by LC- MS/MS using ion-pairing chromatography and solid-phase extraction. Biomed Chromatogr. 2018 May 3:e4269. doi: 10.1002/bmc.4269. Epub ahead of print. PMID: 29726023.