10058-F4
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 406757

CAS#: 403811-55-2

Description: 10058-F4 is a potent and selective c-Myc inhibitor, which markedly increases valproic acid-induced cell death in Jurkat and CCRF-CEM T-lymphoblastic leukemia cells. 10058-F4 inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells. 10058-F4 induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia.


Chemical Structure

img
10058-F4
CAS# 403811-55-2

Theoretical Analysis

MedKoo Cat#: 406757
Name: 10058-F4
CAS#: 403811-55-2
Chemical Formula: C12H11NOS2
Exact Mass: 249.03
Molecular Weight: 249.346
Elemental Analysis: C, 57.80; H, 4.45; N, 5.62; O, 6.42; S, 25.72

Price and Availability

Size Price Availability Quantity
10mg USD 110 Ready to ship
25mg USD 220 Ready to ship
50mg USD 385 Ready to ship
100mg USD 650 Ready to ship
200mg USD 1050 Ready to ship
500mg USD 2350 Ready to ship
1g USD 3650 Ready to ship
Bulk inquiry

Synonym: 10058-F4; 10058F4; 10058 F4.

IUPAC/Chemical Name: 5-[(4-ethylphenyl)methylene]-2-thioxo-4-thiazolidinone

InChi Key: SVXDHPADAXBMFB-JXMROGBWSA-N

InChi Code: InChI=1S/C12H11NOS2/c1-2-8-3-5-9(6-4-8)7-10-11(14)13-12(15)16-10/h3-7H,2H2,1H3,(H,13,14,15)/b10-7+

SMILES Code: O=C1NC(S/C1=C/C2=CC=C(CC)C=C2)=S

Appearance: Yellow solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO, not in water

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target: 10058-F4 is a c-Myc inhibitor that specificallly inhibits the c-Myc-Max interaction and prevents transactivation of c-Myc target gene expression.
In vitro activity: 10058-F4 arrested AML cells at G0/G1 phase, downregulated c-Myc expression and upregulated CDK inhibitors, p21 and p27. Meanwhile, 10058-F4 induced apoptosis through activation of mitochondrial pathway shown by downregulation of Bcl-2, upregulation of Bax, release of cytoplasmic cytochrome C, and cleavage of caspase 3, 7, and 9. Furthermore, 10058-F4 also induced myeloid differentiation, possibly through activation of multiple transcription factors. Similarly, 10058-F4-induced apoptosis and differentiation could also be observed in primary AML cells. Reference: Exp Hematol. 2006 Nov;34(11):1480-9. https://linkinghub.elsevier.com/retrieve/pii/S0301-472X(06)00428-0
In vivo activity: Peak plasma 10058-F4 concentrations of approximately 300 μM are seen at 5 min and declined to below the detection limit at 360 min following a single iv dose. Plasma concentration versus time data are best approximated by a two-compartment, open, linear model. The highest tissue concentrations of 10058-F4 are found in fat, lung, liver, and kidney. Peak tumor concentrations of 10058-F4 are at least tenfold lower than peak plasma concentrations. Eight metabolites of 10058-F4 are identified in plasma, liver, and kidney. The terminal half-life of 10058-F4 is approximately 1 h, and the volume of distribution is >200 ml/kg. No significant inhibition of tumor growth is seen after i.v. treatment of mice with either 20 or 30 mg/kg 10058-F4. Reference: Cancer Chemother Pharmacol. 2009 Mar;63(4):615-25. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18509642/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 49.0 196.51
Ethanol 11.0 44.11

Preparing Stock Solutions

The following data is based on the product molecular weight 249.35 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol: 1. Huang MJ, Cheng YC, Liu CR, Lin S, Liu HE. A small-molecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp Hematol. 2006 Nov;34(11):1480-9. doi: 10.1016/j.exphem.2006.06.019. PMID: 17046567. 2. Lv M, Wang Y, Wu W, Yang S, Zhu H, Hu B, Chen Y, Shi C, Zhang Y, Mu Q, Ouyang G. C‑Myc inhibitor 10058‑F4 increases the efficacy of dexamethasone on acute lymphoblastic leukaemia cells. Mol Med Rep. 2018 Jul;18(1):421-428. doi: 10.3892/mmr.2018.8935. Epub 2018 Apr 27. PMID: 29749488.
In vivo protocol: 1. Guo J, Parise RA, Joseph E, Egorin MJ, Lazo JS, Prochownik EV, Eiseman JL. Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc-Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother Pharmacol. 2009 Mar;63(4):615-25. doi: 10.1007/s00280-008-0774-y. Epub 2008 May 29. PMID: 18509642; PMCID: PMC2752825.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Yang K, Zhang W, Zhong L, Xiao Y, Sahoo S, Fassan M, Zeng K, Magee P, Garofalo M, Shi L. Long non-coding RNA HIF1A-As2 and MYC form a double-positive feedback loop to promote cell proliferation and metastasis in KRAS-driven non- small cell lung cancer. Cell Death Differ. 2023 Apr 11:1–17. doi: 10.1038/s41418-023-01160-x. Epub ahead of print. PMID: 37041291; PMCID: PMC10089381.


2: Zhang Y, Li J, Huang Y, Chen Y, Luo Z, Huang H, West RE 3rd, Nolin TD, Wang Z, Li S. Improved antitumor activity against prostate cancer via synergistic targeting of Myc and GFAT-1. Theranostics. 2023 Jan 1;13(2):578-595. doi: 10.7150/thno.76614. PMID: 36632215; PMCID: PMC9830436.


3: Zhang M, Zhang L, Zhou M, Wang E, Meng B, Li Q, Wang X, Wang Y, Li Q. Anti‑silencing function 1B promotes the progression of pancreatic cancer by activating c‑Myc. Int J Oncol. 2023 Jan;62(1):8. doi: 10.3892/ijo.2022.5456. Epub 2022 Nov 23. PMID: 36416310; PMCID: PMC9728557.


4: Guo H, Zhang W, Wang J, Zhao G, Wang Y, Zhu BM, Dong P, Watari H, Wang B, Li W, Tigyi G, Yue J. Cryptotanshinone inhibits ovarian tumor growth and metastasis by degrading c-Myc and attenuating the FAK signaling pathway. Front Cell Dev Biol. 2022 Sep 28;10:959518. doi: 10.3389/fcell.2022.959518. PMID: 36247016; PMCID: PMC9554091.


5: Liu S, Qiao X, Wu S, Gai Y, Su Y, Edwards H, Wang Y, Lin H, Taub JW, Wang G, Ge Y. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis. 2022 Dec;27(11-12):913-928. doi: 10.1007/s10495-022-01756-7. Epub 2022 Aug 9. PMID: 35943677.


6: Zou Y, Tang H, Miao Y, Zhu H, Wang L, Fan L, Fu J, Xu W, Li J, Xia Y. Overexpression of c-Myc-dependent heterogeneous nuclear ribonucleoprotein A1 promotes proliferation and inhibits apoptosis in NOTCH1-mutated chronic lymphocytic leukemia cells. Chin Med J (Engl). 2022 Apr 20;135(8):920-929. doi: 10.1097/CM9.0000000000002037. PMID: 35730371; PMCID: PMC9276458.


7: Chen Y, Feng X, Yuan Y, Jiang J, Zhang P, Zhang B. Identification of a novel mechanism for reversal of doxorubicin-induced chemotherapy resistance by TXNIP in triple-negative breast cancer via promoting reactive oxygen-mediated DNA damage. Cell Death Dis. 2022 Apr 12;13(4):338. doi: 10.1038/s41419-022-04783-z. PMID: 35414060; PMCID: PMC9005717.


8: Jie Z, Jinna Z, Jingjun Z, Pengcheng L, Fang Y, Qinyang C, Taiyu C, Hequn J, Tao R. Antitumor Effects of 10058-F4 and Curcumin in Combination Therapy for Pancreatic Cancer In Vitro and In Vivo. J Healthc Eng. 2022 Mar 24;2022:1620802. doi: 10.1155/2022/1620802. PMID: 35368919; PMCID: PMC8970865.


9: Suvilesh KN, Nussbaum YI, Radhakrishnan V, Manjunath Y, Avella DM, Staveley-O'Carroll KF, Kimchi ET, Chaudhuri AA, Shyu CR, Li G, Pantel K, Warren WC, Mitchem JB, Kaifi JT. Tumorigenic circulating tumor cells from xenograft mouse models of non-metastatic NSCLC patients reveal distinct single cell heterogeneity and drug responses. Mol Cancer. 2022 Mar 12;21(1):73. doi: 10.1186/s12943-022-01553-5. PMID: 35279152; PMCID: PMC8917773.


10: Li L, Han C, Yu X, Shen J, Cao Y. Targeting AraC-Resistant Acute Myeloid Leukemia by Dual Inhibition of CDK9 and Bcl-2: A Systematic Review and Meta- Analysis. J Healthc Eng. 2022 Jan 25;2022:2842066. doi: 10.1155/2022/2842066. PMID: 35126914; PMCID: PMC8808115.


11: Shiri Heris R, Pourbagheri-Sigaroodi A, Yousefi AM, Bashash D. The Superior Cytotoxicity of Dual Targeting of BCR/ABL and PI3K in K562 Cells: Proposing a Novel Therapeutic Potential for the Treatment of CML. Indian J Hematol Blood Transfus. 2022 Jan;38(1):51-60. doi: 10.1007/s12288-021-01434-9. Epub 2021 Apr 1. PMID: 35125711; PMCID: PMC8804072.


12: Ni F, Zhang T, Xiao W, Dong H, Gao J, Liu Y, Li J. IL-18-Mediated SLC7A5 Overexpression Enhances Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells via the c-MYC Pathway. Front Cell Dev Biol. 2021 Dec 17;9:748831. doi: 10.3389/fcell.2021.748831. PMID: 34977008; PMCID: PMC8718798.


13: Lier S, Sellmer A, Orben F, Heinzlmeir S, Krauß L, Schneeweis C, Hassan Z, Schneider C, Patricia Gloria Schäfer A, Pongratz H, Engleitner T, Öllinger R, Kuisl A, Bassermann F, Schlag C, Kong B, Dove S, Kuster B, Rad R, Reichert M, Wirth M, Saur D, Mahboobi S, Schneider G. A novel Cereblon E3 ligase modulator with antitumor activity in gastrointestinal cancer. Bioorg Chem. 2022 Feb;119:105505. doi: 10.1016/j.bioorg.2021.105505. Epub 2021 Nov 20. PMID: 34838332.


14: Leu JD, Wang CY, Lo CC, Lin MY, Chang CY, Hung WC, Lin ST, Wang BS, Lee YJ. Involvement of c-Myc in low dose radiation-induced senescence enhanced migration and invasion of unirradiated cancer cells. Aging (Albany NY). 2021 Sep 22;13(18):22208-22231. doi: 10.18632/aging.203527. Epub 2021 Sep 22. PMID: 34552037; PMCID: PMC8507273.


15: Ghaffarnia R, Nasrollahzadeh A, Bashash D, Nasrollahzadeh N, Mousavi SA, Ghaffari SH. Inhibition of c-Myc using 10058-F4 induces anti-tumor effects in ovarian cancer cells via regulation of FOXO target genes. Eur J Pharmacol. 2021 Oct 5;908:174345. doi: 10.1016/j.ejphar.2021.174345. Epub 2021 Jul 13. PMID: 34270986.


16: Luo Y, Yang S, Wu X, Takahashi S, Sun L, Cai J, Krausz KW, Guo X, Dias HB, Gavrilova O, Xie C, Jiang C, Liu W, Gonzalez FJ. Intestinal MYC modulates obesity-related metabolic dysfunction. Nat Metab. 2021 Jul;3(7):923-939. doi: 10.1038/s42255-021-00421-8. Epub 2021 Jul 1. PMID: 34211180; PMCID: PMC9944847.


17: Zhang L, Zhang W, Sun J, Liu KN, Gan ZX, Liu YZ, Chang JF, Yang XM, Sun F. Nucleotide variation in histone H2BL drives crossalk of histone modification and promotes tumour cell proliferation by upregulating c-Myc. Life Sci. 2021 Apr 15;271:119127. doi: 10.1016/j.lfs.2021.119127. Epub 2021 Jan 27. PMID: 33515561.


18: Ren J, Huangfu Y, Ge J, Wu B, Li W, Wang X, Zhao L. Computational study on natural compounds inhibitor of c-Myc. Medicine (Baltimore). 2020 Dec 11;99(50):e23342. doi: 10.1097/MD.0000000000023342. PMID: 33327259; PMCID: PMC7738058.


19: Ofori S, Gukathasan S, Awuah SG. Gold-Based Pharmacophore Inhibits Intracellular MYC Protein. Chemistry. 2021 Feb 24;27(12):4168-4175. doi: 10.1002/chem.202004962. Epub 2021 Feb 1. PMID: 33275307; PMCID: PMC8605874.


20: Handa H, Honma K, Oda T, Kobayashi N, Kuroda Y, Kimura-Masuda K, Watanabe S, Ishihara R, Murakami Y, Masuda Y, Tahara KI, Takei H, Kasamatsu T, Saitoh T, Murakami H. Long Noncoding RNA PVT1 Is Regulated by Bromodomain Protein BRD4 in Multiple Myeloma and Is Associated with Disease Progression. Int J Mol Sci. 2020 Sep 27;21(19):7121. doi: 10.3390/ijms21197121. PMID: 32992461; PMCID: PMC7583953.