Tiliroside
featured

    WARNING: This product is for research use only, not for human or veterinary use.

MedKoo CAT#: 465284

CAS#: 20316-62-5

Description: Tiliroside is a polyketide synthase-derived flavonoid glycoside that has been found in Q. ilex and has diverse biological activities. It inhibits carbonic anhydrase VII (CAVII; Ki = 4.6 nM), but not CAI, CAII, CAIV, or CAXII (Kis = >10, >10, 5.46, and 0.134 µM, respectively), in a cell-free assay. Tiliroside scavenges DPPH and superoxide radicals (IC50s = 12.8 and 42 µM, respectively) and is cytotoxic to Jurkat, HepG2, and COLO 205 cells (IC50s = 11.6, 14.3, and 55.4 µM, respectively). It reduces ear edema induced by phorbol 12-myristate 13-acetate (TPA) with an ID50 value of 0.357 mg/ear. Tiliroside (100 mg/kg) decreases triglyceride accumulation in the liver and skeletal muscle in high-fat diet-fed KKAy diabetic mice.


Chemical Structure

img
Tiliroside
CAS# 20316-62-5

Theoretical Analysis

MedKoo Cat#: 465284
Name: Tiliroside
CAS#: 20316-62-5
Chemical Formula: C30H26O13
Exact Mass: 594.14
Molecular Weight: 594.525
Elemental Analysis: C, 60.61; H, 4.41; O, 34.98

Price and Availability

Size Price Availability Quantity
100mg USD 450 2 Weeks
200mg USD 750 2 Weeks
500mg USD 1650 2 Weeks
1g USD 2950 2 Weeks
2g USD 5250 2 Weeks
5g USD 7950 2 Weeks
Bulk inquiry

Synonym: Tiliroside; Kaempferol 3-O-β-D-Glucopyranoside-6-p-coumaril ester; Kaempferol 3-O-β-D-(6''-E-p-coumaroyl)-glucopyranoside;

IUPAC/Chemical Name: ((2R,3S,4S,5R,6S)-6-((5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-hydroxyphenyl)acrylate

InChi Key: DVGGLGXQSFURLP-VWMSDXGPSA-N

InChi Code: InChI=1S/C30H26O13/c31-16-6-1-14(2-7-16)3-10-22(35)40-13-21-24(36)26(38)27(39)30(42-21)43-29-25(37)23-19(34)11-18(33)12-20(23)41-28(29)15-4-8-17(32)9-5-15/h1-12,21,24,26-27,30-34,36,38-39H,13H2/b10-3+/t21-,24-,26+,27-,30+/m1/s1

SMILES Code: O=C1C(O[C@@H]2O[C@H](COC(/C=C/C3=CC=C(O)C=C3)=O)[C@@H](O)[C@H](O)[C@H]2O)=C(OC4=CC(O)=CC(O)=C14)C5=CC=C(O)C=C5

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 30.0 50.46
DMSO 30.0 50.46
DMSO:PBS (pH 7.2) (1:6) 0.1 0.24

Preparing Stock Solutions

The following data is based on the product molecular weight 594.53 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Sousa AP, Fernandes DA, Ferreira MDL, Cordeiro LV, Souza MFV, Pessoa HLF, Oliveira Filho AA, Sá RCS. Analysis of the toxicological and pharmacokinetic profile of Kaempferol-3-O-β-D-(6"-E-p-coumaryl) glucopyranoside - Tiliroside: in silico, in vitro and ex vivo assay. Braz J Biol. 2021 Jun 21;83:e244127. doi: 10.1590/1519-6984.244127. PMID: 34161458.

2: Zhou ZM, Yan DM, Wang YK, Zhang T, Xiao XR, Dai MY, Zhang SW, Liu HN, Li F. Discovery of quality markers in Rubus Chingii Hu using UPLC-ESI-QTOF-MS. J Pharm Biomed Anal. 2021 Sep 5;203:114200. doi: 10.1016/j.jpba.2021.114200. Epub 2021 Jun 10. PMID: 34146951.

3: Kamdoum BC, Simo I, Wouamba SCN, Tchatat Tali BM, Ngameni B, Fotso GW, Ambassa P, Fabrice FB, Lenta BN, Sewald N, Ngadjui BT. Chemical constituents of two Cameroonian medicinal plants: Sida rhombifolia L. and Sida acuta Burm. f. (Malvaceae) and their antiplasmodial activity. Nat Prod Res. 2021 Jun 14:1-8. doi: 10.1080/14786419.2021.1937156. Epub ahead of print. PMID: 34121522.

4: Yuca H, Özbek H, Demirezer LÖ, Kasil HG, Güvenalp Z. trans-Tiliroside: A potent α-glucosidase inhibitor from the leaves of Elaeagnus angustifolia L. Phytochemistry. 2021 Aug;188:112795. doi: 10.1016/j.phytochem.2021.112795. Epub 2021 May 25. PMID: 34044297.

5: Han R, Yang H, Lu L, Lin L. Tiliroside as a CAXII inhibitor suppresses liver cancer development and modulates E2Fs/Caspase-3 axis. Sci Rep. 2021 Apr 21;11(1):8626. doi: 10.1038/s41598-021-88133-7. PMID: 33883691; PMCID: PMC8060393.

6: Yin X, Wang M, Xia Z. In vitro evaluation of intestinal absorption of tiliroside from Edgeworthia gardneri (Wall.) Meisn. Xenobiotica. 2021 Jun;51(6):728-736. doi: 10.1080/00498254.2021.1904304. Epub 2021 Apr 20. PMID: 33874851.

7: Zhuang H, Lv Q, Zhong C, Cui Y, He L, Zhang C, Yu J. Tiliroside Ameliorates Ulcerative Colitis by Restoring the M1/M2 Macrophage Balance via the HIF-1α/glycolysis Pathway. Front Immunol. 2021 Mar 31;12:649463. doi: 10.3389/fimmu.2021.649463. PMID: 33868286; PMCID: PMC8044352.

8: Hong PTL, Kim HJ, Kim WK, Nam JH. Flos magnoliae constituent fargesin has an anti-allergic effect via ORAI1 channel inhibition. Korean J Physiol Pharmacol. 2021 May 1;25(3):251-258. doi: 10.4196/kjpp.2021.25.3.251. PMID: 33859065; PMCID: PMC8050608.

9: Dos Santos Nascimento LB, Gori A, Raffaelli A, Ferrini F, Brunetti C. Phenolic Compounds from Leaves and Flowers of Hibiscus roseus: Potential Skin Cosmetic Applications of an Under-Investigated Species. Plants (Basel). 2021 Mar 10;10(3):522. doi: 10.3390/plants10030522. PMID: 33802222; PMCID: PMC8000889.

10: Yao X, Zhu WR, Huang HL, Zeng YR, Yu WW. [Effective medicinal ingredients and screening of excellent germplasm in Rubus chingii]. Zhongguo Zhong Yao Za Zhi. 2021 Feb;46(3):575-581. Chinese. doi: 10.19540/j.cnki.cjcmm.20201025.102. PMID: 33645022.

11: Elhady SS, Abdelhameed RFA, El-Ayouty MM, Ibrahim AK, Habib ES, Elgawish MS, Hassanean HA, Safo MK, Nafie MS, Ahmed SA. New Antiproliferative Triflavanone from Thymelaea hirsuta-Isolation, Structure Elucidation and Molecular Docking Studies. Molecules. 2021 Jan 31;26(3):739. doi: 10.3390/molecules26030739. PMID: 33572651; PMCID: PMC7867015.

12: Mohammed HA, Khan RA, Abdel-Hafez AA, Abdel-Aziz M, Ahmed E, Enany S, Mahgoub S, Al-Rugaie O, Alsharidah M, Aly MSA, Mehany ABM, Hegazy MM. Phytochemical Profiling, In Vitro and In Silico Anti-Microbial and Anti-Cancer Activity Evaluations and Staph GyraseB and h-TOP-IIβ Receptor-Docking Studies of Major Constituents of Zygophyllum coccineum L. Aqueous- Ethanolic Extract and Its Subsequent Fractions: An Approach to Validate Traditional Phytomedicinal Knowledge. Molecules. 2021 Jan 22;26(3):577. doi: 10.3390/molecules26030577. PMID: 33499325; PMCID: PMC7866194.

13: Termer M, Carola C, Salazar A, Keck CM, Hemberger J, von Hagen J. Identification of plant metabolite classes from Waltheria Indica L. extracts regulating inflammatory immune responses via COX-2 inhibition. J Ethnopharmacol. 2021 Apr 24;270:113741. doi: 10.1016/j.jep.2020.113741. Epub 2021 Jan 13. PMID: 33359867.

14: Zhou DC, Zheng G, Jia LY, He X, Zhang CF, Wang CZ, Yuan CS. Comprehensive evaluation on anti-inflammatory and anti-angiogenic activities in vitro of fourteen flavonoids from Daphne Genkwa based on the combination of efficacy coefficient method and principal component analysis. J Ethnopharmacol. 2021 Mar 25;268:113683. doi: 10.1016/j.jep.2020.113683. Epub 2020 Dec 8. PMID: 33301910.

15: Sánchez M, González-Burgos E, Divakar PK, Gómez-Serranillos MP. DNA-Based Authentication and Metabolomics Analysis of Medicinal Plants Samples by DNA Barcoding and Ultra-High-Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry (UHPLC-MS). Plants (Basel). 2020 Nov 18;9(11):1601. doi: 10.3390/plants9111601. PMID: 33218119; PMCID: PMC7698941.

16: Chen XL, Peng XR, Gong XY, Liu YQ, Qing Z, Ren XX, Su R, Fang LM, Qiu MH, Dong K. Flavonoid glycosides from the nectar of Camellia reticulata Lindl. Nat Prod Res. 2020 Sep 17:1-7. doi: 10.1080/14786419.2020.1819269. Epub ahead of print. PMID: 32940065.

17: Agostini M, Hininger-Favier I, Marcourt L, Boucherle B, Gao B, Hybertson BM, Bose SK, McCord JM, Millery A, Rome M, Ferreira Queiroz E, Wolfender JL, Gallet C, Boumendjel A. Phytochemical and Biological Investigation of Helianthemum nummularium, a High-Altitude Growing Alpine Plant Overrepresented in Ungulates Diets. Planta Med. 2020 Nov;86(16):1185-1190. doi: 10.1055/a-1197-2898. Epub 2020 Jul 9. PMID: 32645735.

18: Ibrahim RR, Ibrahim HA, Shabana SS, El-Hosari DG, Ali SA, Mahgoub S, Moharram FA. New phenolic compounds from Calothamnus quadrifidus R.Br. aerial parts and their antioxidant activity. Nat Prod Res. 2020 Jul 9:1-9. doi: 10.1080/14786419.2020.1789982. Epub ahead of print. PMID: 32643423.

19: Fernandes DA, Oliveira LHG, Rique HL, Souza MFV, Nunes FDC. Insights on the Larvicidal Mechanism of Action of Fractions and Compounds from Aerial Parts of Helicteres velutina K. Schum against Aedes aegypti L. Molecules. 2020 Jul 1;25(13):3015. doi: 10.3390/molecules25133015. PMID: 32630318; PMCID: PMC7412497.

20: Song X, Zhao Y, Wang S, Wang Y, Chen Q, Zhao H, Wang H, Tian S, Yu H, Wu Z. Zi Shen Huo Luo Formula Enhances the Therapeutic Effects of Angiotensin- Converting Enzyme Inhibitors on Hypertensive Left Ventricular Hypertrophy by Interfering With Aldosterone Breakthrough and Affecting Caveolin-1/Mineralocorticoid Receptor Colocalization and Downstream Extracellular Signal-Regulated Kinase Signaling. Front Pharmacol. 2020 Apr 3;11:383. doi: 10.3389/fphar.2020.00383. PMID: 32317965; PMCID: PMC7147343.